Predicting the effect of mutations to investigate recent events of selection across 60,472 Escherichia coli strains

生物 遗传学 基因 选择(遗传算法) 固定(群体遗传学) 背景选择 基因组 否定选择 大肠杆菌 基因组学 中性突变 计算生物学 计算机科学 人工智能
作者
Lucile Vigué,Olivier Tenaillon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (31) 被引量:2
标识
DOI:10.1073/pnas.2304177120
摘要

Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖糖爱干饭完成签到 ,获得积分10
2秒前
Jally完成签到 ,获得积分10
5秒前
6秒前
cd完成签到,获得积分20
6秒前
cherryfa完成签到,获得积分10
7秒前
小白完成签到,获得积分10
9秒前
9秒前
10秒前
woo完成签到 ,获得积分10
11秒前
11完成签到,获得积分10
12秒前
taogege完成签到,获得积分10
17秒前
whitezhu完成签到,获得积分10
18秒前
woo关注了科研通微信公众号
18秒前
ZZ完成签到,获得积分10
20秒前
苗条的枕头完成签到 ,获得积分10
21秒前
热情大树完成签到,获得积分10
25秒前
kk完成签到,获得积分10
26秒前
LYC完成签到,获得积分10
27秒前
调皮的巧凡完成签到,获得积分10
28秒前
南木完成签到,获得积分10
29秒前
perfect完成签到 ,获得积分10
29秒前
猪猪侠完成签到 ,获得积分10
34秒前
严羽完成签到,获得积分10
37秒前
葡萄柚子完成签到 ,获得积分10
37秒前
43秒前
爱吃的肥虾完成签到,获得积分10
43秒前
43秒前
hilm应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
44秒前
TaoTaooooII完成签到,获得积分10
44秒前
将将将应助科研通管家采纳,获得10
44秒前
44秒前
将将将应助科研通管家采纳,获得10
44秒前
44秒前
hey完成签到,获得积分10
44秒前
45秒前
五月天完成签到,获得积分10
45秒前
斯文的老虎完成签到,获得积分10
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369