Predicting the effect of mutations to investigate recent events of selection across 60,472 Escherichia coli strains

生物 遗传学 基因 选择(遗传算法) 固定(群体遗传学) 背景选择 基因组 否定选择 大肠杆菌 基因组学 中性突变 计算生物学 计算机科学 人工智能
作者
Lucile Vigué,Olivier Tenaillon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (31) 被引量:2
标识
DOI:10.1073/pnas.2304177120
摘要

Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向着期望的完成签到 ,获得积分10
2秒前
yyy完成签到 ,获得积分10
4秒前
Retromer完成签到,获得积分10
5秒前
6秒前
负责念梦完成签到,获得积分10
7秒前
9秒前
mio发布了新的文献求助30
9秒前
PGao完成签到,获得积分10
10秒前
赵敏完成签到,获得积分10
11秒前
njzhangyanyang完成签到,获得积分10
13秒前
共享精神应助温柔的吐司采纳,获得10
13秒前
啦啦啦啦完成签到 ,获得积分10
13秒前
14秒前
14秒前
林芊万完成签到,获得积分10
15秒前
鱼仔完成签到,获得积分10
15秒前
丁静完成签到 ,获得积分0
16秒前
量子星尘发布了新的文献求助10
17秒前
嘟嘟完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
完美夜云发布了新的文献求助10
17秒前
小郭子应助请问请问采纳,获得10
18秒前
蓝天发布了新的文献求助10
19秒前
22秒前
luckily完成签到,获得积分10
22秒前
mio完成签到,获得积分10
23秒前
乐乐应助研友_nvG5bZ采纳,获得10
24秒前
cccc完成签到,获得积分10
24秒前
小蘑菇应助123ywh采纳,获得10
25秒前
写个锤子完成签到,获得积分10
25秒前
26秒前
鱼仔发布了新的文献求助10
28秒前
28秒前
ding应助dr_zhoujielong采纳,获得10
29秒前
专注的问寒应助0001采纳,获得50
30秒前
31秒前
Annnnn完成签到,获得积分10
31秒前
Leexxxhaoo完成签到,获得积分10
32秒前
Tbq发布了新的文献求助30
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841