Predicting the effect of mutations to investigate recent events of selection across 60,472 Escherichia coli strains

生物 遗传学 基因 选择(遗传算法) 固定(群体遗传学) 背景选择 基因组 否定选择 大肠杆菌 基因组学 中性突变 计算生物学 人工智能 计算机科学
作者
Lucile Vigué,Olivier Tenaillon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (31) 被引量:2
标识
DOI:10.1073/pnas.2304177120
摘要

Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
JamesPei应助yangyangandrong采纳,获得10
刚刚
积极鸵鸟完成签到,获得积分10
1秒前
1秒前
迷路冰巧完成签到,获得积分10
3秒前
Aurora.H完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Nico发布了新的文献求助10
4秒前
ahslyycky完成签到,获得积分10
5秒前
子车半烟完成签到,获得积分10
5秒前
hx完成签到 ,获得积分10
5秒前
小米发布了新的文献求助10
6秒前
嘲风发布了新的文献求助10
8秒前
轻浮完成签到 ,获得积分10
8秒前
1733完成签到,获得积分10
8秒前
WXyue完成签到 ,获得积分10
9秒前
打打应助Nico采纳,获得10
10秒前
眼睛大的念桃完成签到,获得积分10
10秒前
科研通AI6应助轻松的雨竹采纳,获得10
11秒前
小饼干二完成签到,获得积分20
11秒前
yangyangandrong完成签到,获得积分20
12秒前
senli2018发布了新的文献求助10
14秒前
久木完成签到,获得积分10
14秒前
白阳完成签到,获得积分10
15秒前
一问三不栀完成签到,获得积分10
16秒前
TsingFlower完成签到,获得积分10
16秒前
4000完成签到 ,获得积分10
17秒前
18秒前
19秒前
香蕉以菱完成签到 ,获得积分10
20秒前
顾矜应助Ddz采纳,获得10
21秒前
李娇完成签到 ,获得积分10
21秒前
Jasper应助小饼干二采纳,获得10
21秒前
23秒前
安静啤酒完成签到,获得积分10
24秒前
25秒前
科研通AI6应助FFFFFF采纳,获得10
25秒前
edtaa发布了新的文献求助10
26秒前
小陶子完成签到,获得积分10
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385