Predicting the effect of mutations to investigate recent events of selection across 60,472 Escherichia coli strains

生物 遗传学 基因 选择(遗传算法) 固定(群体遗传学) 背景选择 基因组 否定选择 大肠杆菌 基因组学 中性突变 计算生物学 计算机科学 人工智能
作者
Lucile Vigué,Olivier Tenaillon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (31) 被引量:2
标识
DOI:10.1073/pnas.2304177120
摘要

Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Little2发布了新的文献求助10
1秒前
1秒前
Jackson_Cai发布了新的文献求助10
1秒前
1秒前
充电宝应助清新的苑博采纳,获得10
2秒前
李爱国应助lpp采纳,获得10
2秒前
kilo完成签到 ,获得积分10
2秒前
顾矜应助XiangQin采纳,获得10
2秒前
2秒前
故里发布了新的文献求助10
3秒前
JamesPei应助6666采纳,获得10
3秒前
wanci应助hc采纳,获得10
3秒前
木木完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
bkagyin应助Yanyes采纳,获得10
4秒前
momo19完成签到,获得积分10
5秒前
Eason完成签到 ,获得积分20
5秒前
ddd关闭了ddd文献求助
5秒前
5秒前
6秒前
JJJ发布了新的文献求助10
6秒前
落寞依玉发布了新的文献求助10
6秒前
6秒前
7秒前
李志强发布了新的文献求助10
7秒前
7秒前
abc97完成签到,获得积分10
8秒前
pepsisery完成签到,获得积分10
9秒前
9秒前
六月完成签到,获得积分10
9秒前
9秒前
传奇3应助陌路孤星采纳,获得10
9秒前
9秒前
10秒前
飞跃炼丹炉的沐沐完成签到,获得积分10
10秒前
Juni完成签到,获得积分10
10秒前
核桃应助kkk采纳,获得30
10秒前
11秒前
paperget发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503