Predicting the effect of mutations to investigate recent events of selection across 60,472 Escherichia coli strains

生物 遗传学 基因 选择(遗传算法) 固定(群体遗传学) 背景选择 基因组 否定选择 大肠杆菌 基因组学 中性突变 计算生物学 人工智能 计算机科学
作者
Lucile Vigué,Olivier Tenaillon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (31) 被引量:2
标识
DOI:10.1073/pnas.2304177120
摘要

Microbial genomics studies focusing on the dynamics of selection have often used a small number of distant genomes. As a result, they could only analyze mutations that had become fixed during the divergence between species. However, thousands of genomes of some species are now available in public databases, thanks to high-throughput sequencing. These data provide a more complete picture of the polymorphisms segregating within a species, offering a unique insight into the processes that shape the recent evolution of a species. In this study, we present GLASS (Gene-Level Amino-acid Score Shift), a selection test that is based on the predicted effects of amino acid changes. By comparing the distribution of effects of mutations observed in a gene to the expectation in the absence of selection, GLASS can quantify the intensity of selection. We applied GLASS to a dataset of 60,472 Escherichia coli strains and used this to reexamine the longstanding debate about the role of essentiality versus expression level in the rate of protein evolution. We found that selection has contrasting short-term and long-term dynamics, with essential genes being subject to strong purifying selection in the short term, while expression level determines the rate of gene evolution in the long term. GLASS also found an overrepresentation of inactivating mutations in specific transcription factors, such as efflux pump repressors, which is consistent with selection for antibiotic resistance. These gene-inactivating polymorphisms do not reach fixation, suggesting another contrast between short-term fitness gains and long-term counterselection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九九九发布了新的文献求助10
3秒前
3秒前
Tina完成签到 ,获得积分10
4秒前
6秒前
7秒前
丁老三完成签到 ,获得积分10
11秒前
12秒前
高高的元容完成签到,获得积分20
12秒前
13秒前
高小谦完成签到 ,获得积分10
14秒前
SiyuanLi完成签到,获得积分20
14秒前
14秒前
小马甲应助九九九采纳,获得10
14秒前
16秒前
16秒前
Atalanta完成签到,获得积分10
18秒前
sky发布了新的文献求助10
18秒前
852应助老爹不开车采纳,获得10
18秒前
英姑应助mengyi采纳,获得10
18秒前
HOLLOW发布了新的文献求助10
18秒前
20秒前
萧水白应助ww采纳,获得10
23秒前
A97呀发布了新的文献求助10
23秒前
黑摄会阿Fay完成签到,获得积分10
28秒前
28秒前
白开水完成签到,获得积分10
28秒前
ZXD1989发布了新的文献求助20
28秒前
28秒前
科研通AI2S应助cc采纳,获得10
28秒前
ocean完成签到,获得积分10
32秒前
8R60d8应助cc采纳,获得10
34秒前
研友_ngKyqn发布了新的文献求助10
34秒前
搜集达人应助shona采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
38秒前
斯文败类应助科研通管家采纳,获得10
38秒前
微笑涔雨应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
共享精神应助科研通管家采纳,获得10
38秒前
long83961258完成签到,获得积分10
38秒前
柠栀应助科研通管家采纳,获得10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240949
求助须知:如何正确求助?哪些是违规求助? 2885705
关于积分的说明 8239678
捐赠科研通 2554139
什么是DOI,文献DOI怎么找? 1382287
科研通“疑难数据库(出版商)”最低求助积分说明 649478
邀请新用户注册赠送积分活动 625109