锂(药物)
离子
扩散
电导率
兴奋剂
材料科学
电化学
磷酸铁锂
活化能
无机化学
化学物理
分析化学(期刊)
化学
物理化学
电极
光电子学
热力学
物理
内分泌学
医学
有机化学
色谱法
作者
Liguo Jiao,Zhiqiang Li,Yongzheng Zhu,Wei Zheng,Yao Liang,X. L. Wang,Yan Cui,Zhihua Zhang,Ming He,Bo Song
出处
期刊:AIP Advances
[American Institute of Physics]
日期:2023-07-01
卷期号:13 (7)
被引量:3
摘要
Lithium iron phosphate (LiFePO4) with an olivine-type structure has garnered great interest due to its electrochemical activity. It is considered one of the most promising cathode materials for lithium-ion batteries because of its high discharge platform, large theoretical capacity, and excellent cycling performance and stability. However, the typical crystal structure of LiFePO4 restricts the formation of efficient electron conduction pathways and hampers the embedding and removal motion of lithium ions, resulting in low electron conductivity and a low ion diffusion rate. The experimental results show that element doping can reduce the activation energy of diffusion, increase the diffusion rate of lithium ions, improve the rate capability of lithium-ion batteries, and contribute to the improvement of its conductivity. In this work, the electronic structure and diffusion mechanism of a S/Co/Mn co-doped LiFePO4 system are systematically studied. The introduction of S, Co, and Mn atoms leads to the formation of impurity bands, resulting in a significant reduction in the bandgap from 3.593 eV to 0.190 eV, which is beneficial for improving the conductivity of LiFePO4. Moreover, the diffusion activation energy of lithium ions decreases from 0.73 eV to 0.34 eV, and the diffusion rate of lithium ions increases from 2.7 × 109 cm/s to 1.0 × 1016 cm/s. These results demonstrate that co-doping of S, Co, and Mn can effectively enhance the conductivity and diffusion rate of lithium ions in LiFePO4, providing a reliable reference for improving the electrochemical performance of lithium iron phosphate.
科研通智能强力驱动
Strongly Powered by AbleSci AI