BE-GWO: Binary extremum-based grey wolf optimizer for discrete optimization problems

二进制数 背包问题 水准点(测量) 数学优化 趋同(经济学) 计算机科学 算法 二进制搜索算法 选择(遗传算法) 数学 搜索算法 人工智能 算术 大地测量学 经济增长 经济 地理
作者
Mahdis Banaie-Dezfouli,Mohammad H. Nadimi-Shahraki,Zahra Beheshti
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110583-110583 被引量:18
标识
DOI:10.1016/j.asoc.2023.110583
摘要

Since most metaheuristic algorithms for continuous search space have been developed, a number of transfer functions have been proposed including S-shaped, V-shaped, linear, U-shaped, and X-shaped to convert the continuous solution to the binary one. However, most existing transfer functions do not provide exploration and exploitation required to solve complex discrete problems. Thus, in this study, an improved binary GWO named extremum-based GWO (BE-GWO) algorithm is introduced. The proposed algorithm proposes a new cosine transfer function (CTF) to convert the continuous GWO to the binary form and then introduces an extremum (Ex) search strategy to improve the efficiency of converted binary solutions. The performance of the BE-GWO was evaluated through solving two binary optimization problems, the feature selection and the 0-1 multidimensional knapsack problem (MKP). The results of feature selection problems were compared with several well-known binary metaheuristic algorithms such as BPSO, BGSA, BitABC, bALO, bGWO, BDA, BSSA, and BinABC. Moreover, the results were compared with four versions of the binary GWO, the binary PSO, and the binary ABC. In addition, the BE-GWO algorithm was evaluated to solve the 0-1 MKP with difficult and very difficult benchmark instances and the results were compared with several binary GWO variants. The results of two binary problems were statistically analyzed by the Friedman test. The experimental results showed that the proposed BE-GWO algorithm enhances the performance of binary GWO in terms of solution accuracy, convergence speed, exploration, and balancing between exploration and exploitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮帽子完成签到 ,获得积分10
1秒前
十里长亭发布了新的文献求助10
1秒前
蓁66完成签到,获得积分10
1秒前
academician完成签到,获得积分10
2秒前
2秒前
端庄的连碧完成签到,获得积分10
3秒前
脑洞疼应助青菜拌洋葱采纳,获得10
4秒前
6秒前
烟花应助调皮芫采纳,获得10
7秒前
快乐书琴发布了新的文献求助10
7秒前
科研通AI2S应助鸭鸭采纳,获得10
7秒前
方方完成签到,获得积分10
9秒前
甜甜圈发布了新的文献求助10
9秒前
10秒前
领导范儿应助T_MC郭采纳,获得10
10秒前
搜集达人应助李佳琪采纳,获得10
11秒前
12秒前
Orange应助方方采纳,获得10
12秒前
Liuuuu完成签到,获得积分10
14秒前
孙成成发布了新的文献求助10
14秒前
14秒前
香蕉觅云应助垚祎采纳,获得10
15秒前
LH完成签到,获得积分10
16秒前
lxy19980627发布了新的文献求助10
16秒前
Liuuuu发布了新的文献求助10
17秒前
ys111完成签到,获得积分10
18秒前
科研通AI5应助快乐书琴采纳,获得10
18秒前
18秒前
tsntn完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
LZ关闭了LZ文献求助
21秒前
繁荣的含羞草完成签到,获得积分20
22秒前
汉堡包应助nojivv采纳,获得10
22秒前
医疗搜救犬完成签到 ,获得积分10
22秒前
科研通AI5应助桃子采纳,获得10
23秒前
的速度发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728061
求助须知:如何正确求助?哪些是违规求助? 3273161
关于积分的说明 9980173
捐赠科研通 2988597
什么是DOI,文献DOI怎么找? 1639676
邀请新用户注册赠送积分活动 778878
科研通“疑难数据库(出版商)”最低求助积分说明 747819