Research on Threshold Segmentation Method of Two-Dimensional Otsu Image Based on Improved Sparrow Search Algorithm

大津法 图像分割 计算机科学 人工智能 粒子群优化 人口 分割 模式识别(心理学) 算法 人口学 社会学
作者
Yun Du,H. Yuan,Kejin Jia,F. Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 70459-70469 被引量:8
标识
DOI:10.1109/access.2023.3293191
摘要

Aiming at the issues of complex calculation and low accuracy of two-dimensional (2D) Otsu segmentation images, an image threshold segmentation means of 2D Otsu ground on a modified sparrow search algorithm is proposed.Firstly, in the initialization stage, the tent chaos mapping is added to enhance the multiformity of the population, and the population elite strategy is introduced to enhance the quality of the initial solution.Secondly, in the local search stage, the elite reverse learning strategy is applied to renewal the sparrow location to solve the issue of getting into local optimality.Eventually, the modified sparrow search algorithm is fused with 2D Otsu and the image threshold is segmented to enhance the accuracy of image segmentation.Compared with the traditional 2D Otsu algorithm, 2D Otsu genetic algorithm (GA-Otsu), 2D Otsu seagull optimization algorithm (SOA-Otsu), 2D Otsu particle swarm algorithm (PSO-Otsu) and 2D Otsu sparrow search algorithm (SSA-Otsu), the mean square error (MSE) value is reduced by 40.84%、 2.68%、 1.57%、 0.77% and 1.04%, respectively, and the peak signal-to-noise ratio (PSNR) value is increased by 24.48%、1.24%、0.83%、0.40%and 0.45%, respectively.Moreover, the optimal threshold of the proposed algorithm is better than the other five algorithms.It is verified that the algorithm in this paper has faster convergence speed and higher accuracy, and effectively improves the quality of image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助咕噜咕噜咕嘟咕嘟采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
m7m完成签到,获得积分10
2秒前
uniondavid完成签到,获得积分10
2秒前
4秒前
5秒前
魔幻的笑珊完成签到,获得积分10
5秒前
乐乐应助trocars采纳,获得10
6秒前
脑洞疼应助闾丘山菡采纳,获得10
7秒前
江筱筱完成签到,获得积分10
8秒前
天真之桃完成签到,获得积分10
9秒前
11秒前
Dmooou完成签到,获得积分10
12秒前
12秒前
15秒前
Rondab应助勤恳的夏之采纳,获得10
16秒前
17秒前
trocars发布了新的文献求助10
17秒前
Amos完成签到,获得积分10
18秒前
Rondab应助WQ采纳,获得10
18秒前
坚定的芷珊完成签到,获得积分10
18秒前
zedhumble发布了新的文献求助10
20秒前
大罗发布了新的文献求助10
21秒前
小豆包发布了新的文献求助30
23秒前
23秒前
24秒前
26秒前
29秒前
Meyako完成签到 ,获得积分10
30秒前
Quinna发布了新的文献求助10
30秒前
小豆包完成签到,获得积分20
32秒前
mingming发布了新的文献求助10
32秒前
会撒娇的定帮完成签到 ,获得积分10
34秒前
求知完成签到 ,获得积分10
35秒前
所所应助俏皮的白柏采纳,获得10
36秒前
无情的匪发布了新的文献求助10
36秒前
充电宝应助024680采纳,获得10
37秒前
JamesPei应助mingming采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068