Machine learning study of the extended drug–target interaction network informed by pain related voltage-gated sodium channels

钠通道 不利影响 医学 神经病理性疼痛 计算机科学 自编码 机器学习 药理学 人工智能 深度学习 化学 有机化学
作者
Long Chen,Jian Jiang,Bozheng Dou,Hongsong Feng,Jie Liu,Yueying Zhu,Bengong Zhang,Tianshou Zhou,Guo‐Wei Wei
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
被引量:7
标识
DOI:10.1097/j.pain.0000000000003089
摘要

Abstract Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein–protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug–target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)–based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
免疫方舟完成签到,获得积分10
1秒前
哇卡哇卡完成签到,获得积分10
6秒前
Re完成签到 ,获得积分10
6秒前
活力涔关注了科研通微信公众号
6秒前
7秒前
8秒前
感动毒娘发布了新的文献求助10
9秒前
苞大米发布了新的文献求助10
9秒前
sword完成签到,获得积分10
12秒前
锋锋完成签到,获得积分10
12秒前
najibveto发布了新的文献求助10
13秒前
完美世界应助TCMning采纳,获得10
15秒前
18秒前
橙子完成签到,获得积分10
20秒前
22秒前
那种完成签到,获得积分10
22秒前
wy完成签到,获得积分20
22秒前
rellik发布了新的文献求助10
22秒前
烟花应助芝麻球ii采纳,获得10
22秒前
23秒前
24秒前
gdh发布了新的文献求助10
24秒前
活力涔发布了新的文献求助30
24秒前
苞大米完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
英俊的铭应助小草采纳,获得10
27秒前
养乐多发布了新的文献求助10
28秒前
游a完成签到,获得积分10
30秒前
郝宝真发布了新的文献求助10
31秒前
工大搬砖战神完成签到,获得积分10
31秒前
nnnd77发布了新的文献求助10
31秒前
31秒前
34秒前
天真大神完成签到,获得积分10
35秒前
科研通AI2S应助养乐多采纳,获得10
35秒前
小草发布了新的文献求助10
40秒前
所所应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
41秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165551
求助须知:如何正确求助?哪些是违规求助? 2816731
关于积分的说明 7913345
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388