Image captioning based on an improved attention mechanism

隐藏字幕 计算机科学 变压器 人工智能 编码器 光学(聚焦) 特征(语言学) 解码方法 过程(计算) 计算机视觉 特征提取 图像(数学) 模式识别(心理学) 哲学 物理 量子力学 电压 光学 操作系统 电信 语言学
作者
Liang Li,Nan Xiang
标识
DOI:10.1117/12.2685386
摘要

Attention mechanism in image captioning model can help model focus on relative regions while generating caption. However, existing attention mechanisms are unable to identify important regions and important visual features in images. This problem makes models sometimes pay excessive attention to non-important regions and non-important features in the process of generating image captions, which makes model generate coarse-grained and even wrong image captions. To address this problem, we propose an “Importance Discrimination Attention” (IDA) module, which could discriminate important feature and non-important features and reduce the possibility of misleading by non-important features in the process of generating image captions. We also propose a IDA-based image captioning model IDANet, which is completely based on transformer framework. The encoder of IDANet consists of two parts, one is pretrained Vision Transformer (VIT), which is used to extract visual features in a fast way. The other is refining module which is added into encoder to model position and semantic relationships of different grids. For the decoder, we propose IDA-Decoder which has similar framework with transformer decoder. IDA-Decoder is guided by IDA to focus on crucial regions and features instead of all regions and features while generating image caption. Compared with others attention mechanism, IDA could capture semantic relevance of important regions with other regions in a fine-grained and high-efficient way. The caption generated by IDANet could accurately capture the relevance of different objects and discriminate objects that have similar size and shape. The performance on MSCOCO “Karpathy” offline test split achieves 132.0 CIDEr-D score and 40.3 BLEU-4 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助积极擎汉采纳,获得10
刚刚
1秒前
费劲来到这的Rua完成签到,获得积分10
1秒前
曼珠沙华发布了新的文献求助10
2秒前
worrysyx完成签到,获得积分10
4秒前
huihui发布了新的文献求助10
4秒前
星辰大海应助sasa采纳,获得10
5秒前
7秒前
7秒前
8秒前
拉长的问晴完成签到,获得积分10
8秒前
科研通AI6应助坚果采纳,获得30
8秒前
王冠男完成签到,获得积分10
9秒前
9秒前
9秒前
banboo完成签到,获得积分10
11秒前
爆米花应助yyy采纳,获得10
12秒前
慕青应助qin采纳,获得10
13秒前
大个应助井哥儿采纳,获得10
13秒前
血绣发布了新的文献求助10
13秒前
闪闪秋寒完成签到 ,获得积分10
14秒前
LingYi完成签到,获得积分10
14秒前
郭琳完成签到,获得积分10
14秒前
lsc完成签到,获得积分10
15秒前
psc完成签到,获得积分10
16秒前
花成花完成签到,获得积分10
17秒前
17秒前
17秒前
SciGPT应助huihui采纳,获得10
17秒前
王冠男发布了新的文献求助30
17秒前
细心的思天完成签到 ,获得积分10
21秒前
22秒前
朴素的士晋完成签到 ,获得积分10
22秒前
23秒前
猪蹄发布了新的文献求助10
23秒前
科研通AI2S应助专一的蛋挞采纳,获得10
23秒前
Hello应助啊哈采纳,获得10
23秒前
小李发布了新的文献求助10
24秒前
无极微光应助文艺香菇采纳,获得20
25秒前
英姑应助高兴的彩虹采纳,获得10
25秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314