Image captioning based on an improved attention mechanism

隐藏字幕 计算机科学 变压器 人工智能 编码器 光学(聚焦) 特征(语言学) 解码方法 过程(计算) 计算机视觉 特征提取 图像(数学) 模式识别(心理学) 哲学 物理 量子力学 电压 光学 操作系统 电信 语言学
作者
Liang Li,Nan Xiang
标识
DOI:10.1117/12.2685386
摘要

Attention mechanism in image captioning model can help model focus on relative regions while generating caption. However, existing attention mechanisms are unable to identify important regions and important visual features in images. This problem makes models sometimes pay excessive attention to non-important regions and non-important features in the process of generating image captions, which makes model generate coarse-grained and even wrong image captions. To address this problem, we propose an “Importance Discrimination Attention” (IDA) module, which could discriminate important feature and non-important features and reduce the possibility of misleading by non-important features in the process of generating image captions. We also propose a IDA-based image captioning model IDANet, which is completely based on transformer framework. The encoder of IDANet consists of two parts, one is pretrained Vision Transformer (VIT), which is used to extract visual features in a fast way. The other is refining module which is added into encoder to model position and semantic relationships of different grids. For the decoder, we propose IDA-Decoder which has similar framework with transformer decoder. IDA-Decoder is guided by IDA to focus on crucial regions and features instead of all regions and features while generating image caption. Compared with others attention mechanism, IDA could capture semantic relevance of important regions with other regions in a fine-grained and high-efficient way. The caption generated by IDANet could accurately capture the relevance of different objects and discriminate objects that have similar size and shape. The performance on MSCOCO “Karpathy” offline test split achieves 132.0 CIDEr-D score and 40.3 BLEU-4 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助贾方硕采纳,获得10
刚刚
夏夏发布了新的文献求助10
1秒前
科目三应助豆西豆采纳,获得10
2秒前
2秒前
lmh完成签到,获得积分10
2秒前
乐乐应助极速小鱼采纳,获得10
3秒前
4秒前
默默的问玉完成签到,获得积分10
5秒前
wanci应助happiness采纳,获得10
5秒前
小马嘻嘻发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
int0030应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得20
7秒前
buno应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
小糖完成签到,获得积分10
9秒前
科研通AI6应助分隔符采纳,获得10
9秒前
9秒前
李卓霖发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299