Image captioning based on an improved attention mechanism

隐藏字幕 计算机科学 变压器 人工智能 编码器 光学(聚焦) 特征(语言学) 解码方法 过程(计算) 计算机视觉 特征提取 图像(数学) 模式识别(心理学) 电信 操作系统 量子力学 光学 物理 哲学 电压 语言学
作者
Liang Li,Nan Xiang
标识
DOI:10.1117/12.2685386
摘要

Attention mechanism in image captioning model can help model focus on relative regions while generating caption. However, existing attention mechanisms are unable to identify important regions and important visual features in images. This problem makes models sometimes pay excessive attention to non-important regions and non-important features in the process of generating image captions, which makes model generate coarse-grained and even wrong image captions. To address this problem, we propose an “Importance Discrimination Attention” (IDA) module, which could discriminate important feature and non-important features and reduce the possibility of misleading by non-important features in the process of generating image captions. We also propose a IDA-based image captioning model IDANet, which is completely based on transformer framework. The encoder of IDANet consists of two parts, one is pretrained Vision Transformer (VIT), which is used to extract visual features in a fast way. The other is refining module which is added into encoder to model position and semantic relationships of different grids. For the decoder, we propose IDA-Decoder which has similar framework with transformer decoder. IDA-Decoder is guided by IDA to focus on crucial regions and features instead of all regions and features while generating image caption. Compared with others attention mechanism, IDA could capture semantic relevance of important regions with other regions in a fine-grained and high-efficient way. The caption generated by IDANet could accurately capture the relevance of different objects and discriminate objects that have similar size and shape. The performance on MSCOCO “Karpathy” offline test split achieves 132.0 CIDEr-D score and 40.3 BLEU-4 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉灵凡发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
朱建军应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
orixero应助lw采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
昏睡的蟠桃应助姣妹崽采纳,获得50
1秒前
yar应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
916应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CR7应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
虚幻人完成签到,获得积分10
3秒前
3秒前
和谐曼凝发布了新的文献求助10
3秒前
4秒前
高贵路灯发布了新的文献求助10
4秒前
lynn发布了新的文献求助10
4秒前
4秒前
4秒前
仁爱的若剑完成签到 ,获得积分10
4秒前
4秒前
4秒前
斯文败类应助wade采纳,获得10
5秒前
上官若男应助诚心尔琴采纳,获得10
5秒前
cly3397完成签到,获得积分10
5秒前
5秒前
mm发布了新的文献求助10
6秒前
咯咚完成签到 ,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635