Image captioning based on an improved attention mechanism

隐藏字幕 计算机科学 变压器 人工智能 编码器 光学(聚焦) 特征(语言学) 解码方法 过程(计算) 计算机视觉 特征提取 图像(数学) 模式识别(心理学) 哲学 物理 量子力学 电压 光学 操作系统 电信 语言学
作者
Liang Li,Nan Xiang
标识
DOI:10.1117/12.2685386
摘要

Attention mechanism in image captioning model can help model focus on relative regions while generating caption. However, existing attention mechanisms are unable to identify important regions and important visual features in images. This problem makes models sometimes pay excessive attention to non-important regions and non-important features in the process of generating image captions, which makes model generate coarse-grained and even wrong image captions. To address this problem, we propose an “Importance Discrimination Attention” (IDA) module, which could discriminate important feature and non-important features and reduce the possibility of misleading by non-important features in the process of generating image captions. We also propose a IDA-based image captioning model IDANet, which is completely based on transformer framework. The encoder of IDANet consists of two parts, one is pretrained Vision Transformer (VIT), which is used to extract visual features in a fast way. The other is refining module which is added into encoder to model position and semantic relationships of different grids. For the decoder, we propose IDA-Decoder which has similar framework with transformer decoder. IDA-Decoder is guided by IDA to focus on crucial regions and features instead of all regions and features while generating image caption. Compared with others attention mechanism, IDA could capture semantic relevance of important regions with other regions in a fine-grained and high-efficient way. The caption generated by IDANet could accurately capture the relevance of different objects and discriminate objects that have similar size and shape. The performance on MSCOCO “Karpathy” offline test split achieves 132.0 CIDEr-D score and 40.3 BLEU-4 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
吾身无拘应助科研通管家采纳,获得30
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
刘国材完成签到,获得积分10
1秒前
wang发布了新的文献求助10
1秒前
Hammery发布了新的文献求助10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
11完成签到,获得积分10
5秒前
落后井完成签到,获得积分10
5秒前
5555完成签到,获得积分10
5秒前
小茉莉完成签到 ,获得积分10
5秒前
6秒前
123完成签到,获得积分20
6秒前
贪玩的天荷完成签到,获得积分10
6秒前
英姑应助詹慧子采纳,获得10
6秒前
promise完成签到 ,获得积分10
7秒前
9秒前
10秒前
祈冬完成签到 ,获得积分10
10秒前
volition发布了新的文献求助10
10秒前
dancingidam完成签到,获得积分10
11秒前
狂野老黑完成签到,获得积分10
12秒前
情怀应助火星上手机采纳,获得10
12秒前
整齐醉冬发布了新的文献求助10
13秒前
13秒前
NoMi完成签到,获得积分10
13秒前
13秒前
着急的千山完成签到 ,获得积分10
13秒前
称心翠容完成签到,获得积分10
13秒前
落后井发布了新的文献求助100
14秒前
橘舰长完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513