Chunyang Wang,Yanmin Zhu,Aixin Sun,Zhaobo Wang,Ke Wang
标识
DOI:10.1145/3539618.3591627
摘要
The issue of user cold-start poses a long-standing challenge to recommendation systems, due to the scarce interactions of new users. Recently, meta-learning based studies treat each cold-start user as a user-specific few-shot task and then derive meta-knowledge about fast model adaptation across training users. However, existing solutions mostly do not clearly distinguish the concept of new users and the concept of novel preferences, leading to over-reliance on meta-learning based adaptability to novel patterns. In addition, we also argue that the existing meta-training task construction inherently suffers from the memorization overfitting issue, which inevitably hinders meta-generalization to new users. In response to the aforementioned issues, we propose a preference learning decoupling framework, which is enhanced with meta-augmentation (PDMA), for user cold-start recommendation. To rescue the meta-learning from unnecessary adaptation to common patterns, our framework decouples preference learning for a cold-start user into two complementary aspects: common preference transfer, and novel preference adaptation. To handle the memorization overfitting issue, we further propose to augment meta-training users by injecting attribute-based noises, to achieve mutually-exclusive tasks. Extensive experiments on benchmark datasets demonstrate that our framework achieves superior performance improvements against state-of-the-art methods. We also show that our proposed framework is effective in alleviating memorization overfitting.