Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction

决策树 水质 投票 计算机科学 集成学习 机器学习 北京 质量(理念) 数据挖掘 决策树学习 随机森林 集合预报 树(集合论) 人工智能 水资源 算法 数学 中国 认识论 政治 数学分析 哲学 生物 法学 生态学 政治学
作者
LI Li-li,Jeng Hua Wei
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (23): 10634-10634
标识
DOI:10.3390/su162310634
摘要

Accurately predicting the state of surface water quality is crucial for ensuring the sustainable use of water resources and environmental protection. This often requires a focus on the range of factors affecting water quality, such as physical and chemical parameters. Tree models, with their flexible tree-like structure and strong capability for partitioning and selecting influential water quality features, offer clear decision-making rules, making them suitable for this task. However, an individual decision tree model has limitations and cannot fully capture the complex relationships between all influencing parameters and water quality. Therefore, this study proposes a method combining ensemble tree models with voting algorithms to predict water quality classification. This study was conducted using five surface water monitoring sites in Qingdao, representing a portion of many municipal water environment monitoring stations in China, employing a single-factor determination method with stringent surface water standards. The soft voting algorithm achieved the highest accuracy of 99.91%, and the model addressed the imbalance in original water quality categories, reaching a Matthews Correlation Coefficient (MCC) of 99.88%. In contrast, conventional machine learning algorithms, such as logistic regression and K-nearest neighbors, achieved lower accuracies of 75.90% and 91.33%, respectively. Additionally, the model’s supervision of misclassified data demonstrated its good learning of water quality determination rules. The trained model was also transferred directly to predict water quality at 13 monitoring stations in Beijing, where it performed robustly, achieving an ensemble hard voting accuracy of 97.73% and an MCC of 96.81%. In many countries’ water environment systems, different water qualities correspond to different uses, and the magnitude of influencing parameters is directly related to water quality categories; critical parameters can even directly determine the quality category. Tree models are highly capable of handling nonlinear relationships and selecting important water quality features, allowing them to identify and exploit interactions between water quality parameters, which is especially important when multiple parameters together determine the water quality category. Therefore, there is significant motivation to develop tree model-based water quality prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
等天晴的微波饺子完成签到,获得积分10
1秒前
2秒前
bonnie完成签到,获得积分10
3秒前
3秒前
水阔鱼沉完成签到,获得积分10
5秒前
Zoeyz发布了新的文献求助10
5秒前
zy完成签到,获得积分10
6秒前
青戈完成签到,获得积分10
7秒前
9秒前
鲜艳的宛亦完成签到,获得积分10
10秒前
10秒前
lalala发布了新的文献求助10
14秒前
kkkk发布了新的文献求助10
15秒前
16秒前
hcq完成签到 ,获得积分10
17秒前
17秒前
jiyixiao1完成签到,获得积分10
19秒前
19秒前
Eurus完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
23秒前
加菲丰丰应助lilivite采纳,获得20
23秒前
谨慎访蕊发布了新的文献求助10
23秒前
24秒前
CodeCraft应助ZQJ采纳,获得10
24秒前
YQQQ发布了新的文献求助10
25秒前
欢呼的烧鹅完成签到,获得积分10
26秒前
FashionBoy应助kkkk采纳,获得10
27秒前
cocolu应助kkkk采纳,获得10
27秒前
jiyixiao1发布了新的文献求助10
27秒前
吉寻冬发布了新的文献求助10
28秒前
28秒前
29秒前
30秒前
狂飙的蛋发布了新的文献求助20
31秒前
31秒前
小马甲应助洁净的雪一采纳,获得10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265133
求助须知:如何正确求助?哪些是违规求助? 2905098
关于积分的说明 8332703
捐赠科研通 2575523
什么是DOI,文献DOI怎么找? 1399849
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449