亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction

决策树 水质 投票 计算机科学 集成学习 机器学习 北京 质量(理念) 数据挖掘 决策树学习 随机森林 集合预报 树(集合论) 人工智能 水资源 算法 数学 中国 认识论 政治 数学分析 哲学 生物 法学 生态学 政治学
作者
LI Li-li,Jeng Hua Wei
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (23): 10634-10634
标识
DOI:10.3390/su162310634
摘要

Accurately predicting the state of surface water quality is crucial for ensuring the sustainable use of water resources and environmental protection. This often requires a focus on the range of factors affecting water quality, such as physical and chemical parameters. Tree models, with their flexible tree-like structure and strong capability for partitioning and selecting influential water quality features, offer clear decision-making rules, making them suitable for this task. However, an individual decision tree model has limitations and cannot fully capture the complex relationships between all influencing parameters and water quality. Therefore, this study proposes a method combining ensemble tree models with voting algorithms to predict water quality classification. This study was conducted using five surface water monitoring sites in Qingdao, representing a portion of many municipal water environment monitoring stations in China, employing a single-factor determination method with stringent surface water standards. The soft voting algorithm achieved the highest accuracy of 99.91%, and the model addressed the imbalance in original water quality categories, reaching a Matthews Correlation Coefficient (MCC) of 99.88%. In contrast, conventional machine learning algorithms, such as logistic regression and K-nearest neighbors, achieved lower accuracies of 75.90% and 91.33%, respectively. Additionally, the model’s supervision of misclassified data demonstrated its good learning of water quality determination rules. The trained model was also transferred directly to predict water quality at 13 monitoring stations in Beijing, where it performed robustly, achieving an ensemble hard voting accuracy of 97.73% and an MCC of 96.81%. In many countries’ water environment systems, different water qualities correspond to different uses, and the magnitude of influencing parameters is directly related to water quality categories; critical parameters can even directly determine the quality category. Tree models are highly capable of handling nonlinear relationships and selecting important water quality features, allowing them to identify and exploit interactions between water quality parameters, which is especially important when multiple parameters together determine the water quality category. Therefore, there is significant motivation to develop tree model-based water quality prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxiaoqing发布了新的文献求助10
刚刚
6秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
知性的剑身完成签到,获得积分10
34秒前
DocChen发布了新的文献求助10
1分钟前
xiaoqingnian完成签到,获得积分10
1分钟前
小粒橙完成签到 ,获得积分10
1分钟前
猫抓板完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
万能图书馆应助猫抓板采纳,获得10
3分钟前
3分钟前
猫抓板发布了新的文献求助10
4分钟前
路人应助Magali采纳,获得200
4分钟前
小蘑菇应助猫抓板采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大园完成签到 ,获得积分10
4分钟前
4分钟前
领导范儿应助Magali采纳,获得150
4分钟前
猫抓板发布了新的文献求助10
4分钟前
昭昭完成签到,获得积分10
4分钟前
4分钟前
Magali发布了新的文献求助150
4分钟前
4分钟前
昭昭发布了新的文献求助10
4分钟前
4分钟前
4分钟前
爆米花应助昭昭采纳,获得10
4分钟前
猫抓板发布了新的文献求助10
4分钟前
共享精神应助猫抓板采纳,获得10
5分钟前
5分钟前
猫抓板发布了新的文献求助10
5分钟前
Qing完成签到 ,获得积分10
5分钟前
JamesPei应助猫抓板采纳,获得10
6分钟前
AixLeft完成签到 ,获得积分10
6分钟前
6分钟前
猫抓板发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486