亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction

决策树 水质 投票 计算机科学 集成学习 机器学习 北京 质量(理念) 数据挖掘 决策树学习 随机森林 集合预报 树(集合论) 人工智能 水资源 算法 数学 中国 认识论 政治 数学分析 哲学 生物 法学 生态学 政治学
作者
LI Li-li,Jeng Hua Wei
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (23): 10634-10634
标识
DOI:10.3390/su162310634
摘要

Accurately predicting the state of surface water quality is crucial for ensuring the sustainable use of water resources and environmental protection. This often requires a focus on the range of factors affecting water quality, such as physical and chemical parameters. Tree models, with their flexible tree-like structure and strong capability for partitioning and selecting influential water quality features, offer clear decision-making rules, making them suitable for this task. However, an individual decision tree model has limitations and cannot fully capture the complex relationships between all influencing parameters and water quality. Therefore, this study proposes a method combining ensemble tree models with voting algorithms to predict water quality classification. This study was conducted using five surface water monitoring sites in Qingdao, representing a portion of many municipal water environment monitoring stations in China, employing a single-factor determination method with stringent surface water standards. The soft voting algorithm achieved the highest accuracy of 99.91%, and the model addressed the imbalance in original water quality categories, reaching a Matthews Correlation Coefficient (MCC) of 99.88%. In contrast, conventional machine learning algorithms, such as logistic regression and K-nearest neighbors, achieved lower accuracies of 75.90% and 91.33%, respectively. Additionally, the model’s supervision of misclassified data demonstrated its good learning of water quality determination rules. The trained model was also transferred directly to predict water quality at 13 monitoring stations in Beijing, where it performed robustly, achieving an ensemble hard voting accuracy of 97.73% and an MCC of 96.81%. In many countries’ water environment systems, different water qualities correspond to different uses, and the magnitude of influencing parameters is directly related to water quality categories; critical parameters can even directly determine the quality category. Tree models are highly capable of handling nonlinear relationships and selecting important water quality features, allowing them to identify and exploit interactions between water quality parameters, which is especially important when multiple parameters together determine the water quality category. Therefore, there is significant motivation to develop tree model-based water quality prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致金毛发布了新的文献求助10
1秒前
123456完成签到,获得积分10
16秒前
喷火球发布了新的文献求助10
37秒前
瑞水南郡完成签到,获得积分10
48秒前
FashionBoy应助rose采纳,获得10
53秒前
57秒前
rose发布了新的文献求助10
1分钟前
1分钟前
Ee发布了新的文献求助10
1分钟前
1分钟前
JamesPei应助陈杰采纳,获得10
1分钟前
1分钟前
Suc发布了新的文献求助10
1分钟前
赘婿应助材料生采纳,获得10
1分钟前
香蕉觅云应助芳芳酱采纳,获得10
1分钟前
Suc关闭了Suc文献求助
1分钟前
拾英发布了新的文献求助10
1分钟前
1分钟前
芳芳酱发布了新的文献求助10
1分钟前
ding应助Hayat采纳,获得20
2分钟前
Owen应助拾英采纳,获得10
2分钟前
2分钟前
材料生发布了新的文献求助10
2分钟前
搜集达人应助材料生采纳,获得10
2分钟前
Zhy驳回了852应助
2分钟前
情怀应助苹果小玉采纳,获得10
2分钟前
wanci应助被杖杀的茯苓采纳,获得10
3分钟前
3分钟前
Thi发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
拾英发布了新的文献求助10
3分钟前
3分钟前
标致金毛发布了新的文献求助10
3分钟前
3分钟前
科研启动完成签到,获得积分10
3分钟前
4分钟前
4分钟前
Zhy发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696