Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction

决策树 水质 投票 计算机科学 集成学习 机器学习 北京 质量(理念) 数据挖掘 决策树学习 随机森林 集合预报 树(集合论) 人工智能 水资源 算法 数学 中国 认识论 政治 数学分析 哲学 生物 法学 生态学 政治学
作者
LI Li-li,Jeng Hua Wei
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (23): 10634-10634
标识
DOI:10.3390/su162310634
摘要

Accurately predicting the state of surface water quality is crucial for ensuring the sustainable use of water resources and environmental protection. This often requires a focus on the range of factors affecting water quality, such as physical and chemical parameters. Tree models, with their flexible tree-like structure and strong capability for partitioning and selecting influential water quality features, offer clear decision-making rules, making them suitable for this task. However, an individual decision tree model has limitations and cannot fully capture the complex relationships between all influencing parameters and water quality. Therefore, this study proposes a method combining ensemble tree models with voting algorithms to predict water quality classification. This study was conducted using five surface water monitoring sites in Qingdao, representing a portion of many municipal water environment monitoring stations in China, employing a single-factor determination method with stringent surface water standards. The soft voting algorithm achieved the highest accuracy of 99.91%, and the model addressed the imbalance in original water quality categories, reaching a Matthews Correlation Coefficient (MCC) of 99.88%. In contrast, conventional machine learning algorithms, such as logistic regression and K-nearest neighbors, achieved lower accuracies of 75.90% and 91.33%, respectively. Additionally, the model’s supervision of misclassified data demonstrated its good learning of water quality determination rules. The trained model was also transferred directly to predict water quality at 13 monitoring stations in Beijing, where it performed robustly, achieving an ensemble hard voting accuracy of 97.73% and an MCC of 96.81%. In many countries’ water environment systems, different water qualities correspond to different uses, and the magnitude of influencing parameters is directly related to water quality categories; critical parameters can even directly determine the quality category. Tree models are highly capable of handling nonlinear relationships and selecting important water quality features, allowing them to identify and exploit interactions between water quality parameters, which is especially important when multiple parameters together determine the water quality category. Therefore, there is significant motivation to develop tree model-based water quality prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇的凡发布了新的文献求助10
刚刚
zgdzhj完成签到,获得积分10
1秒前
1秒前
1秒前
Waris发布了新的文献求助10
2秒前
浮游应助晴子采纳,获得10
3秒前
浮游应助长度2到采纳,获得10
4秒前
小宇发布了新的文献求助10
4秒前
QIQI发布了新的文献求助10
5秒前
梦思遗落完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
zyx完成签到,获得积分10
6秒前
简7发布了新的文献求助30
6秒前
佐zzz发布了新的文献求助10
7秒前
lxl发布了新的文献求助10
8秒前
8秒前
上官若男应助ZY采纳,获得10
8秒前
9秒前
10秒前
热情的远锋完成签到 ,获得积分10
11秒前
11秒前
浮游应助晴子采纳,获得10
12秒前
量子星尘发布了新的文献求助10
14秒前
兰兰不懒发布了新的文献求助10
15秒前
Hello应助佐zzz采纳,获得10
15秒前
16秒前
老实的斌完成签到 ,获得积分10
17秒前
2425完成签到,获得积分10
18秒前
田様应助专一的戒指采纳,获得10
19秒前
fengwanru发布了新的文献求助10
19秒前
维尼熊完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
铅笔刀完成签到,获得积分10
24秒前
淡淡萍完成签到,获得积分10
24秒前
yilia完成签到,获得积分10
25秒前
丘比特应助guo采纳,获得30
26秒前
JW完成签到,获得积分10
28秒前
huihui完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700