Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction

决策树 水质 投票 计算机科学 集成学习 机器学习 北京 质量(理念) 数据挖掘 决策树学习 随机森林 集合预报 树(集合论) 人工智能 水资源 算法 数学 中国 认识论 政治 数学分析 哲学 生物 法学 生态学 政治学
作者
LI Li-li,Jeng Hua Wei
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (23): 10634-10634
标识
DOI:10.3390/su162310634
摘要

Accurately predicting the state of surface water quality is crucial for ensuring the sustainable use of water resources and environmental protection. This often requires a focus on the range of factors affecting water quality, such as physical and chemical parameters. Tree models, with their flexible tree-like structure and strong capability for partitioning and selecting influential water quality features, offer clear decision-making rules, making them suitable for this task. However, an individual decision tree model has limitations and cannot fully capture the complex relationships between all influencing parameters and water quality. Therefore, this study proposes a method combining ensemble tree models with voting algorithms to predict water quality classification. This study was conducted using five surface water monitoring sites in Qingdao, representing a portion of many municipal water environment monitoring stations in China, employing a single-factor determination method with stringent surface water standards. The soft voting algorithm achieved the highest accuracy of 99.91%, and the model addressed the imbalance in original water quality categories, reaching a Matthews Correlation Coefficient (MCC) of 99.88%. In contrast, conventional machine learning algorithms, such as logistic regression and K-nearest neighbors, achieved lower accuracies of 75.90% and 91.33%, respectively. Additionally, the model’s supervision of misclassified data demonstrated its good learning of water quality determination rules. The trained model was also transferred directly to predict water quality at 13 monitoring stations in Beijing, where it performed robustly, achieving an ensemble hard voting accuracy of 97.73% and an MCC of 96.81%. In many countries’ water environment systems, different water qualities correspond to different uses, and the magnitude of influencing parameters is directly related to water quality categories; critical parameters can even directly determine the quality category. Tree models are highly capable of handling nonlinear relationships and selecting important water quality features, allowing them to identify and exploit interactions between water quality parameters, which is especially important when multiple parameters together determine the water quality category. Therefore, there is significant motivation to develop tree model-based water quality prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
henry完成签到,获得积分10
刚刚
文艺白晴关注了科研通微信公众号
刚刚
lx123发布了新的文献求助10
刚刚
大模型应助阔达宝莹采纳,获得10
1秒前
图图发布了新的文献求助50
1秒前
Splaink发布了新的文献求助10
1秒前
CC发布了新的文献求助10
1秒前
zl12应助xixi采纳,获得10
2秒前
谷云发布了新的文献求助10
3秒前
Dali应助楚子航采纳,获得20
4秒前
老大车完成签到,获得积分10
4秒前
星辰大海应助zhuang采纳,获得30
4秒前
5秒前
帅到被人打完成签到,获得积分10
6秒前
初秋完成签到,获得积分10
6秒前
6秒前
汉堡包应助宋依依采纳,获得10
7秒前
浮游应助Pierce采纳,获得10
8秒前
bbhk完成签到,获得积分10
9秒前
wwqc完成签到,获得积分0
9秒前
Ting发布了新的文献求助20
10秒前
耳火发布了新的文献求助10
10秒前
月月完成签到,获得积分10
10秒前
chen关注了科研通微信公众号
10秒前
11秒前
琳666发布了新的文献求助30
11秒前
11秒前
朱祥龙发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
wml应助Li采纳,获得10
14秒前
夏晴晴完成签到,获得积分10
15秒前
15秒前
16秒前
受伤尔曼完成签到,获得积分10
16秒前
Pierce完成签到,获得积分10
16秒前
Yu发布了新的文献求助10
17秒前
耳火完成签到,获得积分10
17秒前
zhaosibo020118完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573