亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Damage mode classification in CFRP laminates using convolutional autoencoder and convolutional neural network on acoustic emission waveforms

自编码 卷积神经网络 声发射 波形 材料科学 模式(计算机接口) 声学 计算机科学 复合材料 人工神经网络 人工智能 物理 电信 操作系统 雷达
作者
Yelamarthi Sai Krishna,Gangadharan Raju,Maunendra Sankar Desarkar
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241298403
摘要

The acoustic emission (AE) technique is a widely used nondestructive method for in-situ health monitoring of composite structures. Unlike metals, failure mechanisms in composite structures are complex, involving multiple damage modes, and each damage mode has a distinct AE signature. This work uses deep learning algorithms called convolutional autoencoder (CAE) and convolutional neural network (CNN) to classify damage modes in carbon fiber-reinforced polymer laminates using AE waveforms. Tensile experiments are carried out on laminates of various stacking sequences, and the acquired raw AE waveforms are transformed into time-frequency planes called spectrograms using short-time Fourier transform. CAE is used for retrieving deep features associated with damage modes in the latent space from these spectrograms. Subsequently, k-means is used to cluster the deep features in the latent space. Each cluster is labeled with a damage mode by inspecting their damage signatures using the scalograms. This labeled data is then used to train the CNN. The CNN, once trained is used on the AE data of pristine and notched quasi-isotropic specimens, and its ability to classify and identify the damage modes is investigated. The trained CNN achieves satisfactory classification accuracy of 96.9% on pristine quasi-isotropic specimen data and 96.4% on notched quasi-isotropic specimen data. When compared to the prediction accuracy of pure damage modes, the prediction accuracy of mixed-mode damage is slightly lower, at 92.5% for pristine and 91.3% for notched quasi-isotropic specimens. This reduction in accuracy is due to the spectrograms of mixed-mode damage containing energy distributed across multiple frequency bands. By classifying the AE waveforms of both pristine and notched quasi-isotropic specimens, the progression of different damage modes is analyzed through the cumulative count of AE waveforms associated with each damage type. These findings enhance the understanding of damage mode evolution in composite structures and contribute to structural health monitoring studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
damie发布了新的文献求助30
1秒前
1秒前
Nat完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
Nat发布了新的文献求助10
13秒前
17秒前
18秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
科研任完成签到 ,获得积分10
28秒前
32秒前
38秒前
Swear完成签到 ,获得积分10
39秒前
bkagyin应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得10
39秒前
量子星尘发布了新的文献求助10
41秒前
彭于晏应助Lorain采纳,获得10
41秒前
chenyiiiii完成签到 ,获得积分10
41秒前
43秒前
46秒前
xxxy发布了新的文献求助30
52秒前
忐忑的绿凝完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
58秒前
科研任发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
杰杰小杰发布了新的文献求助10
1分钟前
夹心吉吉完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
打打应助搜嘎采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
搜嘎发布了新的文献求助30
1分钟前
damie完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
他也蓝完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743768
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605182
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734465