Development and Validation of Machine Learning Models for Identifying Prediabetes and Diabetes in Normoglycemia

糖尿病前期 人工智能 机器学习 梯度升压 逻辑回归 支持向量机 接收机工作特性 随机森林 医学 人口 糖尿病 计算机科学 Boosting(机器学习) 范畴变量 内分泌学 2型糖尿病 环境卫生
作者
Xiaodong Zhang,Weidong Yao,Dawei Wang,Wenqi Hu,Guang Zhang,Yongsheng Zhang
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:40 (8)
标识
DOI:10.1002/dmrr.70003
摘要

ABSTRACT Background Prediabetes and diabetes are both abnormal states of glucose metabolism (AGM) that can lead to severe complications. Early detection of AGM is crucial for timely intervention and treatment. However, fasting blood glucose (FBG) as a mass population screening method may fail to identify some individuals who are actually AGM but with normoglycemia. This study aimed to develop and validate machine learning (ML) models to identify AGM among individuals with normoglycemia using routine health check‐up indicators. Methods According to the American Diabetes Association (ADA) criteria, participants with normoglycemia (FBG ≤ 5.6 mmol/L) were collected from 2019 to 2023, and then divided into AGM and Normal groups using glycosylated haemoglobin (HbA1c) 5.7% as the threshold. Data from 2019 to 2022 were divided into training and internal validation sets at a 7:3 ratio, while data from 2023 were used as the external validation set. Seven ML algorithms—including logistic regression (LR), random forest (RF), support vector machine (SVM), extreme gradient boosting machine, multilayer perceptron (MLP), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost)—were used to build models for identifying AGM in normoglycemia population. Model performance was evaluated using the area under the receiver operating characteristic curve (auROC) and the precision‐recall curve (auPR). The feature contributions to the optimal model was visualised using the SHapley Additive exPlanations (SHAP). Finally, an intuitive and user‐friendly interactive interface was developed. Results A total of 59,259 participants were finally enroled in this study, and then divided into the training set of 32,810, the internal validation set of 14,060, and the external validation set of 12,389. The Catboost model outperformed the others with auROC of 0.806 and 0.794 for the internal and external validation set, respectively. Age was the most important feature influencing the performance of the CatBoost model, followed by fasting blood glucose, red blood cells, haemoglobin, body mass index, and triglyceride‐glucose. Conclusion A well‐performed ML model to identify AGM in the normoglycemia population was built, offering significant potential for early intervention and treatment of AGM that would otherwise have been missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yk123完成签到,获得积分10
1秒前
2秒前
2秒前
太渊完成签到 ,获得积分10
3秒前
4秒前
Lucas应助X7采纳,获得10
4秒前
搜集达人应助百招采纳,获得10
4秒前
十一发布了新的文献求助10
4秒前
6秒前
dxh发布了新的文献求助10
6秒前
9秒前
9秒前
neckerzhu完成签到 ,获得积分10
9秒前
髦淡发布了新的文献求助20
10秒前
11秒前
雪sung发布了新的文献求助10
11秒前
cc发布了新的文献求助10
11秒前
万能图书馆应助徐蕴哲采纳,获得10
12秒前
啦啦完成签到 ,获得积分10
12秒前
niki完成签到,获得积分10
13秒前
13秒前
14秒前
17秒前
无无发布了新的文献求助10
18秒前
Zhangfu完成签到,获得积分10
18秒前
19秒前
晴天完成签到,获得积分20
19秒前
cc完成签到,获得积分10
19秒前
19秒前
言午完成签到,获得积分10
20秒前
愤怒的雁梅关注了科研通微信公众号
20秒前
20秒前
好奇宝宝完成签到,获得积分10
21秒前
朴实雨竹发布了新的文献求助30
22秒前
英姑应助hwezhu采纳,获得10
22秒前
顾宇完成签到,获得积分10
22秒前
24秒前
24秒前
徐蕴哲发布了新的文献求助10
24秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837