Synchronous control of hydraulic cylinders for tunneling machine based on improved ESO

量子隧道 控制理论(社会学) 控制(管理) 工程类 物理 机械工程 计算机科学 控制工程 材料科学 人工智能 量子力学
作者
Meisheng Yang,Chixiang Yu,Shuang Luo,Kun Lian
出处
期刊:Mechanics Based Design of Structures and Machines [Informa]
卷期号:: 1-23
标识
DOI:10.1080/15397734.2024.2423769
摘要

The hydraulic system of the tunneling machine exhibits significant nonlinearity, resulting in increased data measurement costs and reduced the synchronization accuracy of two hydraulic cylinders. The crucial part of the tunneling machine is the cutting mechanism for coal mining, with its hydraulic system primarily comprising the lifting hydraulic system and the rotary hydraulic system. However, the synchronization precision of two hydraulic cylinders greatly impacts the reliability of the lifting and rotary circuits. To reduce data acquisition costs during the operation of the tunneling machine and achieve high synchronization accuracy between hydraulic cylinders, a control method based on an improved extended state observer active disturbance rejection control (ESO-ADRC) is proposed. First, a mathematical model of the valve-controlled hydraulic synchronization system is established, and introduce dead zone compensation in the electro-hydraulic proportional directional valve to improve the response speed of the control system by 0.5–1 sec. Then, improved and traditional extended state observers are integrated into the active disturbance rejection controller. Result indicated that the improved ESO-ADRC system offers better observer tracking speed performance, using displacement and velocity as control objectives, the maximum synchronization error was reduced by 35 and 50%, respectively. Additionally, master–slave control and deviation coupling control methods are applied to the system. The results show that with displacement and velocity as control objectives, the maximum absolute value synchronization error of the hydraulic cylinders in the deviation coupling active disturbance rejection control system was reduced by 66 and 63%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助橡皮鱼采纳,获得20
刚刚
wangchu完成签到 ,获得积分10
刚刚
刚刚
刚刚
那些年发布了新的文献求助10
1秒前
lyl19880908应助王梦瑶采纳,获得10
1秒前
粱自中发布了新的文献求助10
2秒前
今后应助哆啦采纳,获得10
3秒前
boging发布了新的文献求助10
3秒前
朱彤彤发布了新的文献求助10
4秒前
4秒前
4秒前
香蕉觅云应助zqf采纳,获得10
5秒前
5秒前
熊大哥完成签到,获得积分20
5秒前
啦啦啦喽完成签到,获得积分10
6秒前
飘逸草丛发布了新的文献求助10
6秒前
啊喃发布了新的文献求助10
7秒前
慕青应助bilibalaa采纳,获得10
7秒前
8秒前
9秒前
田小姐发布了新的文献求助10
10秒前
宁帅发布了新的文献求助10
11秒前
11秒前
4Peace完成签到,获得积分10
11秒前
11秒前
李爱国应助Joe采纳,获得10
13秒前
辉哥发布了新的文献求助10
13秒前
Lyj发布了新的文献求助10
13秒前
余海川发布了新的文献求助10
13秒前
英俊的铭应助科研小能手采纳,获得10
14秒前
14秒前
所所应助出头天采纳,获得10
15秒前
16秒前
大曼曼曼曼完成签到,获得积分10
16秒前
vousmevoyez_完成签到,获得积分10
16秒前
柒柒完成签到,获得积分20
16秒前
大方明杰发布了新的文献求助10
16秒前
盛清让完成签到,获得积分10
17秒前
研友_VZG7GZ应助111采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160