材料科学
原位
转化(遗传学)
伤口护理
皮肤护理
生物医学工程
复合材料
护理部
医学
重症监护医学
有机化学
生物化学
化学
基因
作者
Yong Liu,Li Wang,Wenwen Ren,Nannan Gao,Juanjuan Li,Hao Wang
标识
DOI:10.1021/acsami.4c16041
摘要
Hydrogel-based dressing materials offer significant potential in expediting skin wound healing. Nevertheless, they face several challenges: poor adhesion to wound tissues, difficulties in preservation under ambient conditions, and limited multifunctionality to support all wound healing stages. In this work, a dry patch is designed to address these persistent issues by featuring an in situ solid-to-gel transformation and Janus wet tissue adhesiveness. The HGP patch integrates a wet adhesive layer combining dopamine-conjugated hyaluronic acid (HD) and poly(acrylic acid) (PAA), a drug-loading layer comprising gelatin (Gel), and a nonadhesive gelation layer of poly(vinyl alcohol) (PVA) and sodium alginate (SA). This hierarchical structural design confers exceptional wound adhesion, hemostatic capabilities, and antibacterial and antioxidant activities, as well as immune regulatory properties. These attributes collectively support accelerated skin wound healing, particularly in cases complicated by bacterial infections. This research charts an approach to engineer hydrogel-based wound dressings through on-site hydrogel formation, thus advancing the treatment of wounds afflicted with complex infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI