A novel active learning Kriging-based reliability analysis method for aero-engine gear

克里金 可靠性(半导体) 计算机科学 可靠性工程 人工智能 汽车工程 机器学习 工程类 物理 功率(物理) 量子力学
作者
Huaming Qian,Haoliang Huang,Yanfeng Li,Ying Zeng,Hong-Zhong Huang
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:: 1-20
标识
DOI:10.1115/1.4067668
摘要

Abstract This paper proposes the active learning Kriging based reliability method for high-cycle fatigue reliability analysis of aero-engine gears. Uncertainties to affect the reliability of aero-engine gears are quantified with random variables, and the finite element simulation model of gears is refined to align with experimental data. Based on the Basquin equation, the S-N curve of the gear is fitted to the stress-life data obtained from experiments. The stress under given loads is obtained through simulation, and the corresponding life is derived from the S-N curve. Using the given permissible lifespan, the limit state function for gear fatigue reliability analysis is established. This function is then approximated using an active learning surrogate model, and the probability of failure is subsequently estimated. Furthermore, to enhance computational efficiency and accuracy, this paper reviews the origin of active learning strategy and defines an improvement function aimed at structural reliability analysis by drawing an analogy to the derivation process of the expected improvement (EI) learning function in the efficient global optimization (EGO) algorithm. Consequently, a novel learning function for active learning Kriging-based reliability analysis is derived. The application of this method to aero-engine gears made of 17CrNiMo6 steel verifies that it effectively enhances the efficiency of fatigue reliability analysis under ensuring a certain accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼兔发布了新的文献求助10
刚刚
SYLH应助有何不可采纳,获得10
刚刚
宁哥查文完成签到,获得积分10
刚刚
我睡觉的时候不困完成签到 ,获得积分10
1秒前
麻烦~发布了新的文献求助10
1秒前
坚定小松鼠完成签到,获得积分10
2秒前
2秒前
zhangqi完成签到,获得积分10
3秒前
小橙子完成签到,获得积分10
3秒前
4秒前
zyh完成签到,获得积分10
4秒前
忧虑的访梦完成签到,获得积分10
5秒前
5秒前
qym发布了新的文献求助10
5秒前
6秒前
6秒前
小柠檬发布了新的文献求助10
7秒前
风思雅完成签到,获得积分10
7秒前
文艺雯发布了新的文献求助30
7秒前
阿尔法完成签到,获得积分10
7秒前
纯真电源完成签到,获得积分20
7秒前
lili完成签到 ,获得积分10
8秒前
8秒前
wanci应助小豆芽儿采纳,获得10
9秒前
麻烦~完成签到,获得积分10
9秒前
10秒前
华仔应助gaos采纳,获得10
10秒前
迪迦发布了新的文献求助30
11秒前
糊涂的勒完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
seven完成签到,获得积分10
11秒前
wzxxxx完成签到,获得积分20
11秒前
12秒前
fffzy完成签到,获得积分10
12秒前
MADKAI发布了新的文献求助50
12秒前
lkn完成签到,获得积分10
12秒前
浦肯野举报单薄凌蝶求助涉嫌违规
13秒前
爱撒娇的橘子完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678