A novel active learning Kriging-based reliability analysis method for aero-engine gear

克里金 可靠性(半导体) 计算机科学 可靠性工程 人工智能 汽车工程 机器学习 工程类 物理 量子力学 功率(物理)
作者
Huaming Qian,Haoliang Huang,Yanfeng Li,Ying Zeng,Hong-Zhong Huang
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASM International]
卷期号:: 1-20
标识
DOI:10.1115/1.4067668
摘要

Abstract This paper proposes the active learning Kriging based reliability method for high-cycle fatigue reliability analysis of aero-engine gears. Uncertainties to affect the reliability of aero-engine gears are quantified with random variables, and the finite element simulation model of gears is refined to align with experimental data. Based on the Basquin equation, the S-N curve of the gear is fitted to the stress-life data obtained from experiments. The stress under given loads is obtained through simulation, and the corresponding life is derived from the S-N curve. Using the given permissible lifespan, the limit state function for gear fatigue reliability analysis is established. This function is then approximated using an active learning surrogate model, and the probability of failure is subsequently estimated. Furthermore, to enhance computational efficiency and accuracy, this paper reviews the origin of active learning strategy and defines an improvement function aimed at structural reliability analysis by drawing an analogy to the derivation process of the expected improvement (EI) learning function in the efficient global optimization (EGO) algorithm. Consequently, a novel learning function for active learning Kriging-based reliability analysis is derived. The application of this method to aero-engine gears made of 17CrNiMo6 steel verifies that it effectively enhances the efficiency of fatigue reliability analysis under ensuring a certain accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助plant采纳,获得10
1秒前
JFy完成签到,获得积分10
1秒前
1秒前
4秒前
素言完成签到 ,获得积分10
7秒前
狄振家发布了新的文献求助10
8秒前
所所应助大海采纳,获得10
11秒前
化学元素发布了新的文献求助20
12秒前
14秒前
18秒前
18秒前
传奇3应助榆木小鸟采纳,获得10
18秒前
plant发布了新的文献求助10
18秒前
兴奋念真完成签到,获得积分20
19秒前
19秒前
大海完成签到,获得积分10
20秒前
22秒前
万能图书馆应助狄振家采纳,获得10
22秒前
大海发布了新的文献求助10
24秒前
安详一手完成签到,获得积分10
24秒前
24秒前
27秒前
化学元素发布了新的文献求助10
28秒前
斯巴达发布了新的文献求助10
28秒前
西兰花发布了新的文献求助10
28秒前
joecoco发布了新的文献求助10
29秒前
29秒前
29秒前
米多奇完成签到 ,获得积分10
30秒前
dudu发布了新的文献求助30
31秒前
31秒前
耳机单蹦发布了新的文献求助10
33秒前
33秒前
折耳根完成签到 ,获得积分10
33秒前
36秒前
37秒前
榆木小鸟发布了新的文献求助10
37秒前
37秒前
努力发布了新的文献求助10
38秒前
安详一手给安详一手的求助进行了留言
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309