A novel active learning Kriging-based reliability analysis method for aero-engine gear

克里金 可靠性(半导体) 计算机科学 可靠性工程 人工智能 汽车工程 机器学习 工程类 物理 功率(物理) 量子力学
作者
Huaming Qian,Haoliang Huang,Yanfeng Li,Ying Zeng,Hong-Zhong Huang
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:: 1-20
标识
DOI:10.1115/1.4067668
摘要

Abstract This paper proposes the active learning Kriging based reliability method for high-cycle fatigue reliability analysis of aero-engine gears. Uncertainties to affect the reliability of aero-engine gears are quantified with random variables, and the finite element simulation model of gears is refined to align with experimental data. Based on the Basquin equation, the S-N curve of the gear is fitted to the stress-life data obtained from experiments. The stress under given loads is obtained through simulation, and the corresponding life is derived from the S-N curve. Using the given permissible lifespan, the limit state function for gear fatigue reliability analysis is established. This function is then approximated using an active learning surrogate model, and the probability of failure is subsequently estimated. Furthermore, to enhance computational efficiency and accuracy, this paper reviews the origin of active learning strategy and defines an improvement function aimed at structural reliability analysis by drawing an analogy to the derivation process of the expected improvement (EI) learning function in the efficient global optimization (EGO) algorithm. Consequently, a novel learning function for active learning Kriging-based reliability analysis is derived. The application of this method to aero-engine gears made of 17CrNiMo6 steel verifies that it effectively enhances the efficiency of fatigue reliability analysis under ensuring a certain accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingjianqiang发布了新的文献求助10
刚刚
dingjianqiang发布了新的文献求助30
刚刚
dingjianqiang发布了新的文献求助30
1秒前
dingjianqiang发布了新的文献求助10
1秒前
1秒前
dingjianqiang发布了新的文献求助10
2秒前
dingjianqiang发布了新的文献求助30
2秒前
dingjianqiang发布了新的文献求助30
2秒前
长情的饼干完成签到,获得积分10
2秒前
Ava应助谭显芝采纳,获得10
3秒前
3秒前
阿真发布了新的文献求助10
3秒前
4秒前
CC博士应助自己采纳,获得10
4秒前
mhl11应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Migue应助科研通管家采纳,获得10
5秒前
T9的梦应助科研通管家采纳,获得50
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
思源应助个性湘采纳,获得10
8秒前
袁向薇发布了新的文献求助10
8秒前
Tyy完成签到,获得积分20
8秒前
科研通AI2S应助丸太子采纳,获得10
8秒前
852应助科学家采纳,获得10
8秒前
iVANPENNY应助and999采纳,获得10
11秒前
运医瘦瘦花生完成签到,获得积分10
12秒前
13秒前
科研毛毛虫完成签到,获得积分10
13秒前
13秒前
聪明诗槐完成签到,获得积分10
13秒前
srui完成签到,获得积分10
14秒前
袁向薇完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354275
求助须知:如何正确求助?哪些是违规求助? 2978624
关于积分的说明 8686776
捐赠科研通 2660253
什么是DOI,文献DOI怎么找? 1456516
科研通“疑难数据库(出版商)”最低求助积分说明 674387
邀请新用户注册赠送积分活动 665247