已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Literature Review of 3D Object Detection on Autonomous Driving

计算机科学 对象(语法) 人工智能 计算机视觉
作者
Peng Zhang,Xin Li,Lin Xin,Liang He
出处
期刊:Journal of Artificial Intelligence Research 卷期号:82: 973-1015
标识
DOI:10.1613/jair.1.15961
摘要

In recent years, the realm of computer vision has experienced a significant surge in the importance of 3D object detection, especially in the context of autonomous driving. The capability to precisely identify the locations, dimensions, and types of key 3D objects surrounding an autonomous vehicle is crucial, rendering 3D object detection a vital component of any advanced perception system. This review delivers an extensive overview of the emerging technologies in 3D object detection tailored for autonomous vehicles. It encompasses a thorough examination, evaluation, and integration of the current research landscape in this domain, staying up-to-date with the latest advancements in 3D object detection and suggesting prospective avenues for future research. Our survey begins by clarifying the principles of 3D object detection and addressing its present challenges in the 3D domain. We then introduce three distinct taxonomies: camera-based, point cloudbased, and multi-modality-based approaches, providing a comprehensive classification of contemporary 3D object detection methodologies from various angles. Diverging from previous reviews, this paper also highlights and scrutinizes common issues and solutions for specific scenarios (such as pedestrian detection, lane lines, roadside cameras, and weather conditions) in object detection. Furthermore, we conduct an in-depth analysis and comparison of different classifications and methods, utilizing various datasets and experimental outcomes. Conclusively, we suggest several potential research directions, offering valuable insights for the ongoing evolution of 3D object detection technology. This review aims to serve as a comprehensive resource for researchers and practitioners in the field, guiding future innovations in 3D object detection for autonomous driving.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助花渡采纳,获得10
1秒前
orixero应助我需要文献采纳,获得10
2秒前
Xtay发布了新的文献求助10
3秒前
3秒前
4秒前
浦肯野应助洛溪采纳,获得30
4秒前
yvonnecao发布了新的文献求助10
5秒前
Nicole发布了新的文献求助10
9秒前
assholechea发布了新的文献求助10
10秒前
打打应助workwork采纳,获得10
14秒前
14秒前
18秒前
小鲸鱼应助Sirius采纳,获得10
19秒前
劲秉应助奋斗的萝采纳,获得200
20秒前
20秒前
wqm发布了新的文献求助10
21秒前
22秒前
超级姜片完成签到,获得积分10
24秒前
LLJ发布了新的文献求助10
24秒前
Bystander完成签到 ,获得积分10
25秒前
26秒前
我需要文献完成签到,获得积分20
26秒前
26秒前
29秒前
29秒前
张姝凤完成签到,获得积分10
30秒前
吡咯爱成环应助wqm采纳,获得10
30秒前
花渡发布了新的文献求助10
31秒前
annafan应助我需要文献采纳,获得10
31秒前
子爵木完成签到 ,获得积分10
33秒前
mrcle完成签到,获得积分10
34秒前
34秒前
LLJ完成签到,获得积分10
36秒前
36秒前
37秒前
糖歌吃瘦发布了新的文献求助10
37秒前
zs发布了新的文献求助10
37秒前
zijinbeier完成签到,获得积分10
39秒前
夜绿应助yyy采纳,获得10
43秒前
张姝凤发布了新的文献求助30
45秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471216
求助须知:如何正确求助?哪些是违规求助? 3064058
关于积分的说明 9087301
捐赠科研通 2754846
什么是DOI,文献DOI怎么找? 1511599
邀请新用户注册赠送积分活动 698527
科研通“疑难数据库(出版商)”最低求助积分说明 698404