Mechanisms of Intraseasonal Oscillation in Equatorial Surface Currents in the Pacific Ocean Identified by Neural Network Models

马登-朱利安振荡 振荡(细胞信号) 人工神经网络 气候学 海洋学 地质学 气象学 地理 计算机科学 化学 对流 人工智能 生物化学
作者
Jianqi You,Peng Liang,Lina Yang,Tianyu Zhang,Lingling Xie,Raghu Murtugudde
出处
期刊:Journal Of Geophysical Research: Oceans [Wiley]
卷期号:130 (2)
标识
DOI:10.1029/2024jc021514
摘要

Abstract The characteristics and origins of intraseasonal oscillations (ISOs) in surface currents over the equatorial Pacific are yet to be detailed due to the deficiency of observational data. This study constructs the Pacific surface currents along the equator (every 0.25° of longitude) from 1993 to 2017 (at daily intervals) using a feedforward neural network and multiple sea surface variables, showing superior correlations and root mean square errors with in situ measurements. Based on this product, the ISOs explain ∼10%–30% and ∼20%–50% of the zonal and meridional current variance, respectively, exhibiting disparate characteristics in the western and eastern Pacific. The Madden‐Julian Oscillation (MJO) governs the western basin, where the ISOs are more intense during El Niños. Particularly, significant ISOs in zonal currents (−0.25–0.28 m s −1 ) span nearly the entire basin during EP‐El Niño summers and winters; the intensity becomes even stronger (−0.27–0.32 m s −1 ) for CP‐El Niño winters, as the MJO convection center thrives throughout the life cycle. The intraseasonal meridional currents, though much weaker, extend eastward up to ∼150°W during EP‐El Niño winters. As for the eastern basin, the ISOs arise primarily from baroclinic instability and propagate westward with the phase speed and the domain being fastest and most widespread for La Niñas and vice versa for El Niños. Both the temperature and salinity effects play an essential role. This study introduces an efficient approach to construct equatorial currents using machine learning, facilitating a deeper diagnosis of the tropical ocean circulation dynamics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小熹发布了新的文献求助10
刚刚
Owen应助欧阳静芙采纳,获得10
3秒前
天天快乐应助chy采纳,获得10
3秒前
4秒前
葛运年发布了新的文献求助10
4秒前
一棵西兰花完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
搜集达人应助zhangni采纳,获得10
8秒前
JamesPei应助biocreater采纳,获得10
8秒前
完美世界应助黄油包采纳,获得10
9秒前
鹿依波完成签到,获得积分10
9秒前
11秒前
乐乐应助水滴采纳,获得10
11秒前
隐形曼青应助大气的妙松采纳,获得10
11秒前
午马未羊发布了新的文献求助10
12秒前
幽壑之潜蛟应助玉米烤肠采纳,获得10
13秒前
无忧无虑完成签到,获得积分10
13秒前
Hello应助奥拉夫采纳,获得30
14秒前
15秒前
feb发布了新的文献求助10
16秒前
FashionBoy应助儒雅的凌文采纳,获得10
17秒前
18秒前
21秒前
GuMingyang完成签到,获得积分10
21秒前
smile完成签到,获得积分20
22秒前
23秒前
23秒前
zhangni发布了新的文献求助10
23秒前
cdercder应助凡凡采纳,获得50
26秒前
26秒前
害羞的败发布了新的文献求助10
26秒前
黄油包完成签到,获得积分10
26秒前
feb完成签到,获得积分10
26秒前
ho完成签到,获得积分10
27秒前
wlgjr发布了新的文献求助10
28秒前
欧阳静芙发布了新的文献求助10
28秒前
29秒前
ding应助成功发论文采纳,获得10
29秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700