The Optimization of Culture Conditions for Injectable Recombinant Collagen Hydrogel Preparation Using Machine Learning

重组DNA 自愈水凝胶 材料科学 组织工程 计算机科学 生物医学工程 化学 工程类 高分子化学 生物化学 基因
作者
Mengyu Li,Long Zhao,Yanan Ren,Li Zuo,Ziyi Shen,Jiawei Wu
出处
期刊:Gels [MDPI AG]
卷期号:11 (2): 141-141
标识
DOI:10.3390/gels11020141
摘要

Injectable recombinant collagen hydrogels (RCHs) are crucial in biomedical applications. Culture conditions play an important role in the preparation of hydrogels. However, determining the characteristics of hydrogels under certain conditions and determining the optimal conditions swiftly still remain challenging tasks. In this study, a machine learning approach was introduced to explore the correlation between hydrogel characteristics and culture conditions and determine the optimal culture conditions. The study focused on four key factors as independent variables: initial substrate concentration, reaction temperature, pH level, and reaction time, while the dependent variable was the elastic modulus of the hydrogels. To analyze the impact of these factors on the elastic modulus, four mathematical models were employed, including multiple linear regression (ML), decision tree (DT), support vector machine (SVM), and neural network (NN). The theoretical outputs of NN were closest to the actual values. Therefore, NN proved to be the most suitable model. Subsequently, the optimal culture conditions were identified as a substrate concentration of 15% (W/V), a reaction temperature of 4 °C, a pH of 7.0, and a reaction time of 12 h. The hydrogels prepared under these specific conditions exhibited a predicted elastic modulus of 15,340 Pa, approaching that of natural elastic cartilage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助ZZM采纳,获得10
刚刚
刚刚
1秒前
1秒前
Lucas应助haha采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
隐形曼青应助xu采纳,获得10
2秒前
Orange应助贝贝采纳,获得10
2秒前
卓一航完成签到,获得积分10
3秒前
3秒前
FashionBoy应助p65采纳,获得10
3秒前
3秒前
3秒前
孝择发布了新的文献求助10
3秒前
英姑应助cherrychou采纳,获得10
4秒前
4秒前
科研通AI6应助执着土豆采纳,获得10
4秒前
5秒前
5秒前
点金石完成签到,获得积分10
5秒前
5秒前
喻箴发布了新的文献求助10
6秒前
小巴德发布了新的文献求助10
6秒前
洛莫发布了新的文献求助10
7秒前
jing关注了科研通微信公众号
7秒前
my发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
melon发布了新的文献求助10
8秒前
田様应助想去彩虹海采纳,获得10
8秒前
8秒前
星河完成签到 ,获得积分10
8秒前
9秒前
9秒前
隐形曼青应助yiya采纳,获得30
9秒前
sun完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577053
求助须知:如何正确求助?哪些是违规求助? 4662311
关于积分的说明 14740828
捐赠科研通 4602926
什么是DOI,文献DOI怎么找? 2526046
邀请新用户注册赠送积分活动 1495963
关于科研通互助平台的介绍 1465478