The Optimization of Culture Conditions for Injectable Recombinant Collagen Hydrogel Preparation Using Machine Learning

重组DNA 自愈水凝胶 材料科学 组织工程 计算机科学 生物医学工程 化学 工程类 高分子化学 生物化学 基因
作者
Mengyu Li,Long Zhao,Yanan Ren,Li Zuo,Ziyi Shen,Jiawei Wu
出处
期刊:Gels [MDPI AG]
卷期号:11 (2): 141-141
标识
DOI:10.3390/gels11020141
摘要

Injectable recombinant collagen hydrogels (RCHs) are crucial in biomedical applications. Culture conditions play an important role in the preparation of hydrogels. However, determining the characteristics of hydrogels under certain conditions and determining the optimal conditions swiftly still remain challenging tasks. In this study, a machine learning approach was introduced to explore the correlation between hydrogel characteristics and culture conditions and determine the optimal culture conditions. The study focused on four key factors as independent variables: initial substrate concentration, reaction temperature, pH level, and reaction time, while the dependent variable was the elastic modulus of the hydrogels. To analyze the impact of these factors on the elastic modulus, four mathematical models were employed, including multiple linear regression (ML), decision tree (DT), support vector machine (SVM), and neural network (NN). The theoretical outputs of NN were closest to the actual values. Therefore, NN proved to be the most suitable model. Subsequently, the optimal culture conditions were identified as a substrate concentration of 15% (W/V), a reaction temperature of 4 °C, a pH of 7.0, and a reaction time of 12 h. The hydrogels prepared under these specific conditions exhibited a predicted elastic modulus of 15,340 Pa, approaching that of natural elastic cartilage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的瑛发布了新的文献求助10
1秒前
1秒前
Hello应助All采纳,获得10
2秒前
FGG完成签到,获得积分10
2秒前
共享精神应助自信雪冥采纳,获得10
3秒前
3秒前
foolingtheblind完成签到,获得积分10
3秒前
4秒前
齐辰电完成签到,获得积分10
4秒前
科研通AI5应助ff采纳,获得10
4秒前
5秒前
苏卿发布了新的文献求助30
5秒前
星威应助妞妞采纳,获得20
5秒前
jzj完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
yff发布了新的文献求助10
7秒前
8秒前
蔷薇果发布了新的文献求助10
8秒前
wangyk发布了新的文献求助20
8秒前
8秒前
庚子鼠发布了新的文献求助10
10秒前
10秒前
10秒前
埮埮完成签到,获得积分10
11秒前
11秒前
12秒前
未晞发布了新的文献求助10
13秒前
归尘发布了新的文献求助10
14秒前
孙皮皮发布了新的文献求助10
14秒前
情怀应助Atopos文采纳,获得10
14秒前
NexusExplorer应助sky采纳,获得10
15秒前
Ava应助66ds采纳,获得10
15秒前
shi hui应助七月采纳,获得10
16秒前
Li发布了新的文献求助10
16秒前
All发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379