The Optimization of Culture Conditions for Injectable Recombinant Collagen Hydrogel Preparation Using Machine Learning

重组DNA 自愈水凝胶 材料科学 组织工程 计算机科学 生物医学工程 化学 工程类 高分子化学 生物化学 基因
作者
Mengyu Li,Long Zhao,Yanan Ren,Li Zuo,Ziyi Shen,Jiawei Wu
出处
期刊:Gels [MDPI AG]
卷期号:11 (2): 141-141
标识
DOI:10.3390/gels11020141
摘要

Injectable recombinant collagen hydrogels (RCHs) are crucial in biomedical applications. Culture conditions play an important role in the preparation of hydrogels. However, determining the characteristics of hydrogels under certain conditions and determining the optimal conditions swiftly still remain challenging tasks. In this study, a machine learning approach was introduced to explore the correlation between hydrogel characteristics and culture conditions and determine the optimal culture conditions. The study focused on four key factors as independent variables: initial substrate concentration, reaction temperature, pH level, and reaction time, while the dependent variable was the elastic modulus of the hydrogels. To analyze the impact of these factors on the elastic modulus, four mathematical models were employed, including multiple linear regression (ML), decision tree (DT), support vector machine (SVM), and neural network (NN). The theoretical outputs of NN were closest to the actual values. Therefore, NN proved to be the most suitable model. Subsequently, the optimal culture conditions were identified as a substrate concentration of 15% (W/V), a reaction temperature of 4 °C, a pH of 7.0, and a reaction time of 12 h. The hydrogels prepared under these specific conditions exhibited a predicted elastic modulus of 15,340 Pa, approaching that of natural elastic cartilage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要发文章完成签到,获得积分10
1秒前
1秒前
大模型应助哆啦A梦采纳,获得10
1秒前
的的完成签到,获得积分10
1秒前
2秒前
松与杉发布了新的文献求助30
2秒前
2秒前
Nicey_W发布了新的文献求助10
3秒前
Jasper应助Fangyoyo采纳,获得10
5秒前
7秒前
7秒前
8秒前
9秒前
10秒前
11秒前
丘比特应助max采纳,获得10
12秒前
LL完成签到 ,获得积分10
12秒前
Nicey_W完成签到,获得积分10
14秒前
月下魔术师完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
子木发布了新的文献求助10
17秒前
onmyway完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
19秒前
rrr发布了新的文献求助10
19秒前
末晶完成签到,获得积分10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
chen应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得50
19秒前
直率代荷应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800