An expert ensemble for detecting anomalous scenes, interactions, and behaviors in autonomous driving

人工智能 计算机科学 计算机视觉 人机交互 机器学习
作者
Tianchen Ji,Neeloy Chakraborty,André Schreiber,Katherine Driggs-Campbell
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
标识
DOI:10.1177/02783649241297998
摘要

As automated vehicles enter public roads, safety in a near-infinite number of driving scenarios becomes one of the major concerns for the widespread adoption of fully autonomous driving. The ability to detect anomalous situations outside of the operational design domain is a key component in self-driving cars, enabling us to mitigate the impact of abnormal ego behaviors and to realize trustworthy driving systems. On-road anomaly detection in egocentric videos remains a challenging problem due to the difficulties introduced by complex and interactive scenarios. We conduct a holistic analysis of common on-road anomaly patterns, from which we propose three unsupervised anomaly detection experts: a scene expert that focuses on frame-level appearances to detect abnormal scenes and unexpected scene motions; an interaction expert that models normal relative motions between two road participants and raises alarms whenever anomalous interactions emerge; and a behavior expert which monitors abnormal behaviors of individual objects by future trajectory prediction. To combine the strengths of all the modules, we propose an expert ensemble (Xen) using a Kalman filter, in which the final anomaly score is absorbed as one of the states and the observations are generated by the experts. Our experiments employ a novel evaluation protocol for realistic model performance, demonstrate superior anomaly detection performance than previous methods, and show that our framework has potential in classifying anomaly types using unsupervised learning on a large-scale on-road anomaly dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
柯一一应助wise111采纳,获得10
1秒前
懵懂的冰凡完成签到 ,获得积分10
1秒前
mmb发布了新的文献求助10
2秒前
2秒前
3秒前
吃狼的羊完成签到,获得积分10
3秒前
纯真玉兰发布了新的文献求助10
5秒前
saberynn发布了新的文献求助10
6秒前
XXXXX发布了新的文献求助10
7秒前
黄启烽发布了新的文献求助20
8秒前
Lucas应助羔羊采纳,获得10
8秒前
孙小小发布了新的文献求助10
8秒前
谢YH完成签到,获得积分10
8秒前
xcxcxcily完成签到,获得积分10
9秒前
张铎发布了新的文献求助30
10秒前
在水一方应助李威龙采纳,获得10
10秒前
whisper发布了新的文献求助20
11秒前
11秒前
12秒前
舒屿望迷完成签到,获得积分10
12秒前
冷静妙海完成签到 ,获得积分10
13秒前
Febrine0502完成签到,获得积分10
13秒前
14秒前
永霖完成签到,获得积分10
15秒前
15秒前
wyy完成签到,获得积分10
17秒前
Akim应助seven采纳,获得10
17秒前
桐桐应助孙晓婷采纳,获得30
17秒前
18秒前
包容的夏之完成签到,获得积分10
18秒前
op1116完成签到,获得积分10
19秒前
王昕钥完成签到,获得积分10
19秒前
啊呜发布了新的文献求助10
19秒前
zoe666发布了新的文献求助30
19秒前
20秒前
柯一一应助wise111采纳,获得10
20秒前
张铎完成签到,获得积分20
21秒前
112233445566完成签到,获得积分20
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962798
求助须知:如何正确求助?哪些是违规求助? 3508732
关于积分的说明 11142584
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791581
邀请新用户注册赠送积分活动 872976
科研通“疑难数据库(出版商)”最低求助积分说明 803517