普鲁士蓝
铜
锌
制作
兴奋剂
材料科学
离子
无机化学
纳米技术
化学
光电子学
电化学
冶金
电极
物理化学
有机化学
医学
替代医学
病理
作者
Pappu Naskar,Pallav Mondal,Biplab Biswas,Sourav Laha,Anjan Banerjee
标识
DOI:10.1002/ente.202401733
摘要
High‐entropy Prussian blue analogues (HE‐PBAs) show great promise as active materials in Na‐ion batteries, particularly due to their multimetallic synergism that enhances electrochemical performance. This study explores two HE‐PBAs: Na 2 Mn 0.2 Fe 0.2 Co 0.2 Ni 0.2 Cu 0.2 Fe(CN) 6 (HE‐PBA‐1) and Na 2 Mn 0.2 Fe 0.2 Co 0.2 Ni 0.2 Zn 0.2 Fe(CN) 6 (HE‐PBA‐2). Both crystallize in monoclinic ( P 2 1 /n ) symmetry, but HE‐PBA‐1, with Cu, exhibits a lower bandgap, lower Na‐ion diffusion barrier, higher [Fe(CN) 6 ] vacancy, and smaller particle size compared to HE‐PBA‐2 with Zn. These factors result in higher power capability for HE‐PBA‐1 due to its enhanced electronic conductivity and Na‐ion diffusivity. Additionally, its higher [Fe(CN) 6 ] vacancy and smaller particle size offer more electrochemical active sites, improving energy characteristics. A Na‐ion full cell with HE‐PBA‐1 as the positive electrode and a mixed‐metallic sodium–copper–iron oxide (NaCuFe‐Oxide) as the negative electrode in a hydrogel electrolyte is assembled. It achieves a specific capacity of 94 mAh g −1 at 100 mA g −1 , an energy density of 70 Wh kg −1 at 74 W kg −1 , a power density of 375 W kg −1 at 57 Wh kg −1 , and excellent durability with 89% capacity retention over 500 cycles at 200 mA g −1 within a 0–2 V window. A 5 V/3 mAh prototype device is tested with a solar charging module to evaluate its real‐life feasibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI