Realizing high power factor and thermoelectric performance in band engineered AgSbTe2

热电效应 材料科学 塞贝克系数 热电材料 兴奋剂 热导率 光电子学 功勋 凝聚态物理 工程物理 热力学 物理 复合材料
作者
Yu Zhang,Congcong Xing,Dongyang Wang,Aziz Genç,Seng Huat Lee,Chang Cheng,Li Zhi,Luyao Zheng,Khak Ho Lim,Hangtian Zhu,Rabeya Bosry Smriti,Yu Liu,Shaobo Cheng,Min Hong,Xiaolei Fan,Zhiqiang Mao,Li‐Dong Zhao,Andreu Cabot,Tiejun Zhu,Bed Poudel
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55280-0
摘要

AgSbTe2 is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe2-based thermoelectric devices. In this work, we demonstrate that hole-doped AgSbTe2 with Sn induces the formation of a new impurity band just above the valence band maximum. This approach significantly improves the electrical transport properties, contrary to previous strategies that focused on reducing lattice thermal conductivity. As a result, we achieve a record-high power factor of 27 μWcm−1K−2 and a peak thermoelectric figure of merit zT of 2.5 at 673 K. This exceptional performance is attributed to an increased hole concentration resulting from the formation of the impurity band and a lower formation energy of the defect complexes ( $${V}_{{Ag}}^{1-}$$ + $${{Sn}}_{{Sb}}^{1-}$$ ). Besides, the doped materials exhibit a significantly improved Seebeck coefficient by inhibiting bipolar conductivity and preventing the formation of n-type Ag2Te. Additionally, the optimized AgSbTe2 is used to fabricate a unicouple thermoelectric device that achieves energy conversion efficiencies of up to 12.1% and a high power density of 1.13 Wcm−2. This study provides critical insights and guidance for optimizing the performance of p-type AgSbTe2 in thermoelectric applications. Sn doping enables a breakthrough in p-type AgSbTe2 for thermoelectric applications, achieving a zT of 2.5 and 12.1% device efficiency. The authors reveal an impurity band mechanism, offering a strategy for AgSbTe2 optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高山我梦完成签到,获得积分10
刚刚
科研通AI2S应助务实的秋白采纳,获得10
1秒前
2秒前
2秒前
4秒前
爱笑可乐完成签到,获得积分10
4秒前
耿耿发布了新的文献求助10
5秒前
Law完成签到,获得积分10
5秒前
gugu完成签到,获得积分10
6秒前
6秒前
7秒前
聪慧小燕发布了新的文献求助10
9秒前
9秒前
安于此生完成签到 ,获得积分10
11秒前
明天再见完成签到 ,获得积分10
11秒前
孙某人发布了新的文献求助10
13秒前
深情安青应助东风de夢采纳,获得10
13秒前
今天喝奶茶了吗完成签到,获得积分10
14秒前
Summer发布了新的文献求助10
14秒前
18秒前
18秒前
John完成签到 ,获得积分10
19秒前
在水一方应助Summer采纳,获得10
19秒前
02发布了新的文献求助10
20秒前
思源应助好好采纳,获得10
20秒前
21秒前
21秒前
vivian完成签到 ,获得积分10
23秒前
小马甲应助耿耿采纳,获得10
24秒前
无花果应助淡然的大碗采纳,获得10
26秒前
科研通AI2S应助温婉的樱桃采纳,获得10
26秒前
陈丫发布了新的文献求助10
28秒前
小米粒发布了新的文献求助10
28秒前
明天再见关注了科研通微信公众号
28秒前
Rae sremer完成签到,获得积分10
29秒前
温柔的天奇完成签到,获得积分10
30秒前
30秒前
liujianzhuo完成签到,获得积分10
32秒前
SciGPT应助02采纳,获得10
32秒前
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342905
求助须知:如何正确求助?哪些是违规求助? 2970032
关于积分的说明 8642381
捐赠科研通 2649963
什么是DOI,文献DOI怎么找? 1451022
科研通“疑难数据库(出版商)”最低求助积分说明 672080
邀请新用户注册赠送积分活动 661374