Realizing high power factor and thermoelectric performance in band engineered AgSbTe2

热电效应 材料科学 塞贝克系数 热电材料 兴奋剂 热导率 光电子学 功勋 凝聚态物理 工程物理 热力学 物理 复合材料
作者
Yu Zhang,Congcong Xing,Dongyang Wang,Aziz Genç,Seng Huat Lee,Chang Cheng,Li Zhi,Luyao Zheng,Khak Ho Lim,Hangtian Zhu,Rabeya Bosry Smriti,Yu Liu,Shaobo Cheng,Min Hong,Xiaolei Fan,Zhiqiang Mao,Li‐Dong Zhao,Andreu Cabot,Tiejun Zhu,Bed Poudel
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:3
标识
DOI:10.1038/s41467-024-55280-0
摘要

AgSbTe2 is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe2-based thermoelectric devices. In this work, we demonstrate that hole-doped AgSbTe2 with Sn induces the formation of a new impurity band just above the valence band maximum. This approach significantly improves the electrical transport properties, contrary to previous strategies that focused on reducing lattice thermal conductivity. As a result, we achieve a record-high power factor of 27 μWcm−1K−2 and a peak thermoelectric figure of merit zT of 2.5 at 673 K. This exceptional performance is attributed to an increased hole concentration resulting from the formation of the impurity band and a lower formation energy of the defect complexes ( $${V}_{{Ag}}^{1-}$$ + $${{Sn}}_{{Sb}}^{1-}$$ ). Besides, the doped materials exhibit a significantly improved Seebeck coefficient by inhibiting bipolar conductivity and preventing the formation of n-type Ag2Te. Additionally, the optimized AgSbTe2 is used to fabricate a unicouple thermoelectric device that achieves energy conversion efficiencies of up to 12.1% and a high power density of 1.13 Wcm−2. This study provides critical insights and guidance for optimizing the performance of p-type AgSbTe2 in thermoelectric applications. Sn doping enables a breakthrough in p-type AgSbTe2 for thermoelectric applications, achieving a zT of 2.5 and 12.1% device efficiency. The authors reveal an impurity band mechanism, offering a strategy for AgSbTe2 optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
amin完成签到,获得积分10
2秒前
静静完成签到,获得积分20
2秒前
yuchangkun发布了新的文献求助10
3秒前
麻花精发布了新的文献求助10
3秒前
naki关注了科研通微信公众号
3秒前
4秒前
4秒前
5秒前
我是老大应助zf采纳,获得10
5秒前
7秒前
8秒前
今后应助奥德彪拉香蕉采纳,获得10
8秒前
罗是一发布了新的文献求助10
8秒前
阚曦完成签到,获得积分10
9秒前
19205100313发布了新的文献求助10
9秒前
10秒前
10秒前
靠谱发布了新的文献求助10
10秒前
暮春之初发布了新的文献求助10
11秒前
清脆书琴完成签到,获得积分10
12秒前
12秒前
天顺完成签到,获得积分10
12秒前
lxx完成签到,获得积分10
13秒前
13秒前
meimei发布了新的文献求助10
13秒前
花花呀完成签到,获得积分10
14秒前
张达发布了新的文献求助10
14秒前
打打应助超超采纳,获得10
15秒前
重要的冰绿完成签到,获得积分10
15秒前
CiCi完成签到,获得积分10
16秒前
魔幻安筠发布了新的文献求助10
16秒前
16秒前
天顺发布了新的文献求助10
16秒前
西瓜周氏发布了新的文献求助10
16秒前
难过千易发布了新的文献求助10
16秒前
lixia完成签到 ,获得积分10
17秒前
orixero应助靠谱采纳,获得10
17秒前
17秒前
田様应助骆驼顶顶采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142