Nonlinear vibration analysis and defect characterization using entropy measure-based learning algorithm in a defective rolling element bearings

振动 非线性系统 熵(时间箭头) 计算机科学 滚动轴承 波形 状态监测 算法 信号处理 故障检测与隔离 样本熵 模式识别(心理学) 人工智能 工程类 声学 执行机构 物理 电气工程 电信 雷达 量子力学
作者
Pankaj Kumar,S. Narayanan,Piyush Shakya
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241303866
摘要

Rolling element bearings (REBs) constitute a crucial element in rotating machinery, and their malfunction is one of the most common reasons for unplanned outages and shutdowns. As a result, monitoring the health of REBs, detecting and diagnosing the size and location of faults, and assessing their degradation have been the subject of extensive research. In the last few decades, several signal processing techniques such as Fast Fourier transform, Wavelet transform, Hilbert transform, artificial neural network, and recurrence plot (RP), among others, have been proposed for the diagnosis and prognosis of REBs. However, most of these techniques provide only a qualitative diagnosis while ignoring the quantitative aspect of the faults. The current work proposes a novel entropy-based fault detection approach and grading the condition of bearings from noisy time history measurements. Entropy-based measures based on Kullback–Leibler and Shannon entropy from vibration signals have been used for grading the condition of bearings. Subsequently, these entropy basis measures have been successfully tested on vibration signatures from various bearing fault types occurring at different locations. The results indicate a one-to-one relation between fault severity and its entropy measure. Moreover, each type of bearing fault has been shown to have a well-defined entropy measure, for different faults lie on a nearly linear locus. In addition to the field and experimental data obtained in the workshop, a nonlinear vibration model under the combined effect of the unbalanced and non-Gaussian Poisson loading has been developed to obtain the acceleration time waveform for the fault severity assessment. The noisy nonlinear model takes into account the Hertizian contact force between the ball and races, internal clearance, race waviness, varying compliances, and localized defects. The adaptive time stepping (ATSP) numerical integration combined with the Brownian tree is used to obtain the nonlinear vibration response. The results show the effectiveness of the proposed algorithm in the diagnosis and prognosis of various types of REB faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苹果涵蕾发布了新的文献求助10
1秒前
大力的问蕊完成签到,获得积分10
1秒前
4秒前
破碎时间完成签到 ,获得积分10
4秒前
阔达如松发布了新的文献求助10
4秒前
Orange应助默默采纳,获得10
4秒前
4秒前
4秒前
GDN完成签到 ,获得积分10
4秒前
哥哥完成签到,获得积分10
5秒前
hwyk发布了新的文献求助10
6秒前
6秒前
蒋若风发布了新的文献求助10
6秒前
amanda应助张益发采纳,获得20
6秒前
cx_008完成签到,获得积分10
6秒前
7秒前
7秒前
FashionBoy应助卫三采纳,获得10
7秒前
7秒前
Orange应助傻傻的仙人掌采纳,获得10
8秒前
荒林完成签到,获得积分20
8秒前
8秒前
万能图书馆应助jh采纳,获得10
9秒前
小北发布了新的文献求助10
9秒前
CodeCraft应助Usin采纳,获得10
9秒前
丘比特应助小贝采纳,获得10
9秒前
tomorrow发布了新的文献求助10
9秒前
zkygmu完成签到,获得积分20
9秒前
HuiYmao发布了新的文献求助10
10秒前
10秒前
鲜艳的芹发布了新的文献求助10
11秒前
11秒前
哟哟小姚妹妹完成签到,获得积分10
11秒前
doc.level完成签到,获得积分10
12秒前
丘比特应助沉静白翠采纳,获得10
13秒前
科目三应助阔达如松采纳,获得10
13秒前
烟花应助王枫采纳,获得10
14秒前
lio完成签到,获得积分10
14秒前
等风来、云飞扬完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836