亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonlinear vibration analysis and defect characterization using entropy measure-based learning algorithm in a defective rolling element bearings

振动 非线性系统 熵(时间箭头) 计算机科学 滚动轴承 波形 状态监测 算法 信号处理 故障检测与隔离 样本熵 模式识别(心理学) 人工智能 工程类 声学 执行机构 物理 电气工程 电信 雷达 量子力学
作者
Pankaj Kumar,S. Narayanan,Piyush Shakya
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241303866
摘要

Rolling element bearings (REBs) constitute a crucial element in rotating machinery, and their malfunction is one of the most common reasons for unplanned outages and shutdowns. As a result, monitoring the health of REBs, detecting and diagnosing the size and location of faults, and assessing their degradation have been the subject of extensive research. In the last few decades, several signal processing techniques such as Fast Fourier transform, Wavelet transform, Hilbert transform, artificial neural network, and recurrence plot (RP), among others, have been proposed for the diagnosis and prognosis of REBs. However, most of these techniques provide only a qualitative diagnosis while ignoring the quantitative aspect of the faults. The current work proposes a novel entropy-based fault detection approach and grading the condition of bearings from noisy time history measurements. Entropy-based measures based on Kullback–Leibler and Shannon entropy from vibration signals have been used for grading the condition of bearings. Subsequently, these entropy basis measures have been successfully tested on vibration signatures from various bearing fault types occurring at different locations. The results indicate a one-to-one relation between fault severity and its entropy measure. Moreover, each type of bearing fault has been shown to have a well-defined entropy measure, for different faults lie on a nearly linear locus. In addition to the field and experimental data obtained in the workshop, a nonlinear vibration model under the combined effect of the unbalanced and non-Gaussian Poisson loading has been developed to obtain the acceleration time waveform for the fault severity assessment. The noisy nonlinear model takes into account the Hertizian contact force between the ball and races, internal clearance, race waviness, varying compliances, and localized defects. The adaptive time stepping (ATSP) numerical integration combined with the Brownian tree is used to obtain the nonlinear vibration response. The results show the effectiveness of the proposed algorithm in the diagnosis and prognosis of various types of REB faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
李子彤发布了新的文献求助10
3秒前
超级野狼发布了新的文献求助10
7秒前
keyanbaicai发布了新的文献求助10
8秒前
西吴完成签到 ,获得积分10
8秒前
小南极完成签到,获得积分10
9秒前
9℃完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
李子彤完成签到,获得积分10
16秒前
yuan完成签到,获得积分10
17秒前
19秒前
默默善愁发布了新的文献求助10
19秒前
crx发布了新的文献求助10
22秒前
李嘉衡完成签到 ,获得积分10
23秒前
脑洞疼应助安静的老师采纳,获得10
25秒前
27秒前
李东东完成签到 ,获得积分10
27秒前
自信人生二百年完成签到,获得积分10
28秒前
29秒前
淡然发布了新的文献求助10
33秒前
今天没带脑子完成签到 ,获得积分10
35秒前
快乐雁蓉完成签到,获得积分20
35秒前
2032jia完成签到,获得积分10
35秒前
37秒前
38秒前
香蕉念波发布了新的文献求助10
38秒前
温柔从此尽完成签到,获得积分10
40秒前
OnlyHarbour发布了新的文献求助10
42秒前
44秒前
Hello应助sh采纳,获得10
47秒前
哇咔咔完成签到 ,获得积分10
49秒前
干净寻冬完成签到,获得积分0
50秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
爆米花应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
小马甲应助keyanbaicai采纳,获得10
55秒前
57秒前
sh发布了新的文献求助10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754731
求助须知:如何正确求助?哪些是违规求助? 5489024
关于积分的说明 15380533
捐赠科研通 4893223
什么是DOI,文献DOI怎么找? 2631816
邀请新用户注册赠送积分活动 1579732
关于科研通互助平台的介绍 1535521