Nonlinear vibration analysis and defect characterization using entropy measure-based learning algorithm in a defective rolling element bearings

振动 非线性系统 熵(时间箭头) 计算机科学 滚动轴承 波形 状态监测 算法 信号处理 故障检测与隔离 样本熵 模式识别(心理学) 人工智能 工程类 声学 执行机构 物理 量子力学 电信 雷达 电气工程
作者
Pankaj Kumar,S. Narayanan,Piyush Shakya
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241303866
摘要

Rolling element bearings (REBs) constitute a crucial element in rotating machinery, and their malfunction is one of the most common reasons for unplanned outages and shutdowns. As a result, monitoring the health of REBs, detecting and diagnosing the size and location of faults, and assessing their degradation have been the subject of extensive research. In the last few decades, several signal processing techniques such as Fast Fourier transform, Wavelet transform, Hilbert transform, artificial neural network, and recurrence plot (RP), among others, have been proposed for the diagnosis and prognosis of REBs. However, most of these techniques provide only a qualitative diagnosis while ignoring the quantitative aspect of the faults. The current work proposes a novel entropy-based fault detection approach and grading the condition of bearings from noisy time history measurements. Entropy-based measures based on Kullback–Leibler and Shannon entropy from vibration signals have been used for grading the condition of bearings. Subsequently, these entropy basis measures have been successfully tested on vibration signatures from various bearing fault types occurring at different locations. The results indicate a one-to-one relation between fault severity and its entropy measure. Moreover, each type of bearing fault has been shown to have a well-defined entropy measure, for different faults lie on a nearly linear locus. In addition to the field and experimental data obtained in the workshop, a nonlinear vibration model under the combined effect of the unbalanced and non-Gaussian Poisson loading has been developed to obtain the acceleration time waveform for the fault severity assessment. The noisy nonlinear model takes into account the Hertizian contact force between the ball and races, internal clearance, race waviness, varying compliances, and localized defects. The adaptive time stepping (ATSP) numerical integration combined with the Brownian tree is used to obtain the nonlinear vibration response. The results show the effectiveness of the proposed algorithm in the diagnosis and prognosis of various types of REB faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜包子123完成签到,获得积分10
1秒前
世上僅有的榮光之路完成签到,获得积分0
2秒前
mojito完成签到 ,获得积分0
2秒前
elebug完成签到,获得积分10
5秒前
xue完成签到 ,获得积分10
7秒前
杨羕完成签到,获得积分10
8秒前
12秒前
海森堡完成签到 ,获得积分10
16秒前
心灵美的不斜完成签到 ,获得积分10
23秒前
蓝色的纪念完成签到,获得积分10
24秒前
Lynn完成签到 ,获得积分10
26秒前
精神是块骨头完成签到,获得积分10
33秒前
俊秀的思山完成签到,获得积分10
34秒前
面汤完成签到 ,获得积分10
36秒前
火星上惜天完成签到 ,获得积分10
40秒前
红毛兔完成签到,获得积分10
40秒前
852应助坚强千筹采纳,获得10
41秒前
44秒前
量子星尘发布了新的文献求助10
44秒前
灵感大王喵完成签到 ,获得积分10
47秒前
Ashley完成签到 ,获得积分10
48秒前
风清扬应助科研通管家采纳,获得10
52秒前
在水一方应助科研通管家采纳,获得10
52秒前
风清扬应助科研通管家采纳,获得10
52秒前
脑洞疼应助科研通管家采纳,获得10
52秒前
风清扬应助科研通管家采纳,获得10
52秒前
完美世界应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
风清扬应助科研通管家采纳,获得10
53秒前
风清扬应助科研通管家采纳,获得10
53秒前
shhoing应助科研通管家采纳,获得10
53秒前
53秒前
历历万乡应助科研通管家采纳,获得10
53秒前
xiaoliu完成签到,获得积分10
58秒前
忧心的代芙完成签到 ,获得积分10
1分钟前
doclarrin完成签到 ,获得积分10
1分钟前
世外完成签到,获得积分10
1分钟前
小美女完成签到 ,获得积分10
1分钟前
Mcdull完成签到,获得积分10
1分钟前
yeahCZY应助一个小胖子采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539188
求助须知:如何正确求助?哪些是违规求助? 4625972
关于积分的说明 14597205
捐赠科研通 4566798
什么是DOI,文献DOI怎么找? 2503620
邀请新用户注册赠送积分活动 1481554
关于科研通互助平台的介绍 1453069