Multi-Domain Features and Multi-Task Learning for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces

脑-机接口 计算机科学 判别式 卷积神经网络 人工智能 典型相关 规范化(社会学) 嵌入 模式识别(心理学) 语音识别 可视化 学习迁移 任务(项目管理) 机器学习 脑电图 工程类 心理学 系统工程 精神科 社会学 人类学
作者
Yeou‐Jiunn Chen,Shih-Chung Chen,Chung-Min Wu
标识
DOI:10.20944/preprints202501.1734.v1
摘要

Brain-computer interfaces (BCIs) enable people to communicate with others or devices, and improving BCI performance is essential for developing real-life applications. In this study, a steady-state visual evoked potential-based BCI (SSVEP-based BCI) with multi-domain features and multi-task learning is developed. To accurately represent the characteristics of an SSVEP signal, SSVEP signals in the time and frequency domains are selected as multi-domain features. Convolutional neural networks are separately used for time and frequency domain signals to effectively extract the embedding features. An element-wise addition operation and batch normalization are applied to fuse the time and frequency domain features. A sequence of convolutional neural networks is then adopted to find discriminative embedding features for classification. Finally, multi-task learning-based neural networks are used to correctly detect the corresponding stimuli. The experimental results showed that the proposed approach outperforms EEGNet, multi-task learning-based neural networks, canonical correlation analysis (CCA), and filter bank CCA (FBCCA). Additionally, the proposed approach is more suitable for developing real-time BCIs compared to a system where the duration of an input is 4 seconds. In the future, utilizing multi-task learning to learn the characteristics of embedding features extracted from FBCCA may further improve the performance of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
在下板蓝根完成签到,获得积分10
1秒前
无名老大应助hushan53采纳,获得30
3秒前
赫灵竹完成签到,获得积分10
4秒前
hhc完成签到,获得积分10
4秒前
酷波er应助兴奋仙人掌采纳,获得10
5秒前
科研通AI5应助Gachuai采纳,获得30
5秒前
wsh发布了新的文献求助10
6秒前
笨笨迎南发布了新的文献求助10
7秒前
小可乐完成签到,获得积分10
7秒前
7秒前
大模型应助ccc采纳,获得10
8秒前
虚幻青曼完成签到,获得积分10
9秒前
在水一方应助生动向日葵采纳,获得10
10秒前
10秒前
11秒前
12秒前
13秒前
14秒前
衰神完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
闪闪的蓝天完成签到,获得积分10
16秒前
16秒前
17秒前
芈冖发布了新的文献求助10
17秒前
大灯完成签到,获得积分10
17秒前
唐明穆发布了新的文献求助10
17秒前
LMC发布了新的文献求助10
18秒前
共享精神应助柠小檬c采纳,获得30
18秒前
简单灵凡发布了新的文献求助10
19秒前
fc小肥杨完成签到,获得积分10
20秒前
lemon应助热吻街头采纳,获得20
20秒前
ccc发布了新的文献求助10
21秒前
Kcc发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045