清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Infarct core segmentation using U-Net in CT perfusion imaging: a feasibility study

医学 分割 像素 基本事实 核医学 灌注 灌注扫描 人工智能 放射科 计算机科学
作者
Ching‐Ching Yang,S Chen
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851241305736
摘要

Background The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction. Purpose To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging. Material and Methods CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI). The dataset used in this study was from the ISLES2018 challenge, which contains 63 acute stroke patients receiving CT perfusion imaging and DWI within 8 h of stroke onset. The segmentation accuracy of model outputs was assessed by calculating Dice similarity coefficient (DSC), sensitivity, and intersection over union (IoU). Results The highest DSC was observed in U-Net taking mean transit time (MTT) or time-to-maximum (Tmax) as input. Meanwhile, the highest sensitivity and IoU were observed in U-Net taking Tmax as input. A DSC in the range of 0.2–0.4 was found in U-Net taking Tmax as input when the infarct area contains < 1000 pixels. A DSC of 0.4–0.6 was found in U-Net taking Tmax as input when the infarct area contains 1000–1999 pixels. A DSC value of 0.6–0.8 was found in U-Net taking Tmax as input when the infarct area contains ≥ 2000 pixels. Conclusion Our model achieved good performance for infarct area containing ≥ 2000 pixels, so it may assist in identifying patients who are contraindicated for intravenous thrombolysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
炜大的我应助科研通管家采纳,获得10
39秒前
wickedzz完成签到,获得积分10
39秒前
紫熊完成签到,获得积分10
41秒前
jwq完成签到,获得积分10
42秒前
LIVE完成签到,获得积分10
1分钟前
Ji完成签到,获得积分10
1分钟前
1分钟前
jerry完成签到 ,获得积分10
1分钟前
或无情完成签到 ,获得积分10
1分钟前
嬗变的天秤完成签到,获得积分10
2分钟前
2分钟前
creep2020完成签到,获得积分10
2分钟前
3分钟前
3分钟前
眯眯眼的衬衫应助mouset270采纳,获得30
4分钟前
5分钟前
lichee完成签到 ,获得积分10
5分钟前
5分钟前
上官若男应助blanche采纳,获得10
5分钟前
LouieHuang发布了新的文献求助10
5分钟前
5分钟前
5分钟前
LouieHuang完成签到,获得积分10
5分钟前
blanche发布了新的文献求助10
5分钟前
6分钟前
6分钟前
上官若男应助波波玛奇朵采纳,获得10
6分钟前
mf2002mf完成签到 ,获得积分10
6分钟前
波波玛奇朵完成签到,获得积分10
6分钟前
Haixia完成签到,获得积分10
7分钟前
7分钟前
7分钟前
拼搏海云发布了新的文献求助10
7分钟前
hhuzk发布了新的文献求助30
7分钟前
一三二五七完成签到 ,获得积分0
8分钟前
9分钟前
虚幻的夜天完成签到 ,获得积分10
9分钟前
9分钟前
lzy完成签到 ,获得积分10
10分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381348
求助须知:如何正确求助?哪些是违规求助? 2996254
关于积分的说明 8767871
捐赠科研通 2681518
什么是DOI,文献DOI怎么找? 1468546
科研通“疑难数据库(出版商)”最低求助积分说明 679041
邀请新用户注册赠送积分活动 671114