Infarct core segmentation using U-Net in CT perfusion imaging: a feasibility study

医学 分割 像素 基本事实 核医学 灌注 灌注扫描 人工智能 放射科 计算机科学
作者
Ching‐Ching Yang,S Chen
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851241305736
摘要

Background The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction. Purpose To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging. Material and Methods CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI). The dataset used in this study was from the ISLES2018 challenge, which contains 63 acute stroke patients receiving CT perfusion imaging and DWI within 8 h of stroke onset. The segmentation accuracy of model outputs was assessed by calculating Dice similarity coefficient (DSC), sensitivity, and intersection over union (IoU). Results The highest DSC was observed in U-Net taking mean transit time (MTT) or time-to-maximum (Tmax) as input. Meanwhile, the highest sensitivity and IoU were observed in U-Net taking Tmax as input. A DSC in the range of 0.2–0.4 was found in U-Net taking Tmax as input when the infarct area contains < 1000 pixels. A DSC of 0.4–0.6 was found in U-Net taking Tmax as input when the infarct area contains 1000–1999 pixels. A DSC value of 0.6–0.8 was found in U-Net taking Tmax as input when the infarct area contains ≥ 2000 pixels. Conclusion Our model achieved good performance for infarct area containing ≥ 2000 pixels, so it may assist in identifying patients who are contraindicated for intravenous thrombolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wind发布了新的文献求助10
刚刚
刚刚
刚刚
李爱国应助tianyi采纳,获得10
刚刚
33完成签到 ,获得积分10
刚刚
文文发布了新的文献求助10
1秒前
情怀应助li1采纳,获得10
1秒前
程勋航完成签到,获得积分10
2秒前
paddi发布了新的文献求助10
2秒前
大美美完成签到,获得积分10
3秒前
yuxiao发布了新的文献求助10
3秒前
scq发布了新的文献求助10
3秒前
3秒前
塞塞完成签到,获得积分10
4秒前
咕噜完成签到,获得积分10
4秒前
11122发布了新的文献求助10
4秒前
科研通AI5应助阿虎采纳,获得10
4秒前
5秒前
5秒前
彭于晏应助June采纳,获得10
5秒前
DoIt完成签到,获得积分10
5秒前
5秒前
5秒前
Matthew_G完成签到,获得积分10
5秒前
5秒前
温柔樱桃发布了新的文献求助10
5秒前
普陀hotdog完成签到,获得积分10
6秒前
6秒前
JSJ发布了新的文献求助10
7秒前
清脆平安发布了新的文献求助10
7秒前
8秒前
Atlantic完成签到,获得积分10
8秒前
8秒前
嘿嘿完成签到,获得积分10
8秒前
华仔应助高贵书南采纳,获得10
9秒前
科研通AI5应助生动的问旋采纳,获得10
9秒前
9秒前
流落科研界的公主完成签到,获得积分10
9秒前
冰淇淋发布了新的文献求助10
9秒前
9秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3722056
求助须知:如何正确求助?哪些是违规求助? 3267950
关于积分的说明 9952320
捐赠科研通 2981982
什么是DOI,文献DOI怎么找? 1635801
邀请新用户注册赠送积分活动 776659
科研通“疑难数据库(出版商)”最低求助积分说明 746469