亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Reinforcement Learning Framework for UAV Swarm Two-Stage Cooperative Multi-Target Detection Tasks

计算机科学 强化学习 群体行为 人工智能 人机交互
作者
Yijing Zhao,Shih‐Tong Lu,Chao Wang,Yumeng Liu,Yi Ding,Hongan Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2025.3527157
摘要

Developing efficient collaborative strategies for UAV swarms is crucial for achieving accurate and rapid execution of the Multi-Target Detecting (MTD) tasks which involve two primary stages in practical scenarios: dispersed search by multi-UAVs in unknown dynamic environments to locate targets, and subsequent aggregation to gather all targets information within the scene, which called detecting and aggregation processes. In recent years, several collaborative strategy methods have been developed for application in UAV swarm mission scenarios. These methods are typically designed for single-stage tasks, and therefore their performance is likely to be suboptimal when applied to multi-stage tasks like the MTD tasks, which have distinctly different characteristics and objectives across stages. In this paper, we propose a novel integrated deep reinforcement learning decision framework that can offer effective collaborative strategies for tasks characterized by distinct stages, denoted as the STDGNet. The STDGNet comprises a Transformer-based Deep Graph Network (TDGN) module alongside two Specialized optimization strategies: the location-dispersion strategy and the cluster-action-consistency strategy. The TDGN module is designed to extract features from observations and interaction dynamics among UAVs, aimed at generating collaborative strategies. The integration of two specialized strategies enables the STDGNet framework to adapt well to multi-stage tasks: during the detection stage, the location-dispersion strategy maintains UAV dispersal to expedite the discovery of more targets; during the aggregation stage, the cluster-action-consistency strategy ensures that UAVs within the same cluster move in the same direction, facilitating the formation of interconnected communication networks. To assess the efficiency and resilience of the proposed framework, we construct an MTD environment where extensive experimentation shows that the STDGNet framework surpasses baseline methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
1秒前
00完成签到,获得积分10
55秒前
Luv_JoeyZhang完成签到 ,获得积分10
1分钟前
1分钟前
sougardenist完成签到,获得积分10
3分钟前
Li完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
5分钟前
andrele应助朱文韬采纳,获得10
5分钟前
6分钟前
风华正茂发布了新的文献求助10
6分钟前
Krim完成签到 ,获得积分10
6分钟前
紧张的以山完成签到,获得积分10
7分钟前
7分钟前
元水云完成签到,获得积分10
8分钟前
9分钟前
皮皮发布了新的文献求助10
9分钟前
科研通AI5应助科研通管家采纳,获得10
10分钟前
榆木小鸟完成签到 ,获得积分10
10分钟前
上官若男应助义气的玉米采纳,获得10
10分钟前
feiying88完成签到 ,获得积分10
10分钟前
风华正茂发布了新的文献求助10
10分钟前
10分钟前
皮皮发布了新的文献求助10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
12分钟前
12分钟前
orixero应助大方的盼雁采纳,获得10
12分钟前
义气的玉米完成签到,获得积分10
12分钟前
禾中丨小骨完成签到 ,获得积分10
12分钟前
13分钟前
13分钟前
大方的盼雁完成签到,获得积分10
13分钟前
任性的棒棒糖完成签到,获得积分10
14分钟前
14分钟前
14分钟前
明朗完成签到 ,获得积分10
14分钟前
ZH的天方夜谭完成签到,获得积分20
14分钟前
15分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753871
求助须知:如何正确求助?哪些是违规求助? 3297262
关于积分的说明 10098204
捐赠科研通 3012077
什么是DOI,文献DOI怎么找? 1654458
邀请新用户注册赠送积分活动 788787
科研通“疑难数据库(出版商)”最低求助积分说明 753022