Impacts of Different Satellite‐Based Precipitation Signature Errors on Hydrological Modeling Performance Across China

降水 环境科学 气候学 卫星 签名(拓扑) 中国 气象学 地理 地质学 数学 几何学 考古 航空航天工程 工程类
作者
Chiyuan Miao,Jiaojiao Gou,Jinlong Hu,Qingyun Duan
出处
期刊:Earth’s Future [American Geophysical Union]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004954
摘要

Abstract The quasi‐global availability of satellite‐based precipitation products (SPPs) holds significant potential for improving hydrological modeling skill. However, limited knowledge exists concerning the impacts of different SPP error type on hydrological modeling skill and their sensitivity across different climate zones. In this study, forcing data sets from 10 SPPs were collected to drive hydrological models during the period 2001–2018 for 366 catchments across China. Here, we analyze the impact of the SPP errors associated with different precipitation intensities (light, moderate, and heavy) and different precipitation signatures (magnitude, variance, and occurrence) on the performance of hydrological simulations, and rank the sensitivities of SPPs errors for four major Köppen‐Geiger climate zones. The results show that heavy precipitation in SPPs is generally associated with higher errors than light and moderate precipitation when compared to gauge‐based precipitation observations, but hydrological model skill is more sensitive to errors from moderate precipitation than from heavy precipitation. The probability of moderate precipitation detection was identified as the most sensitive metric in determining hydrological model performance, with sensitivities of 0.58, 0.39, 0.59, and 0.47 in the temperate, boreal, arid, and highland climate zones, respectively. The variance error and magnitude error for heavy precipitation from SPPs were also identified as sensitive factors for hydrological modeling in the temperate and arid climate zones, respectively. These findings are crucial for enhancing the understanding of interactions between SPPs uncertainty and hydrological simulations, leading to improved data accuracy of precipitation forcing and the identification of appropriate SPPs for hydrological simulation in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyh完成签到,获得积分10
刚刚
小曾应助Florencia采纳,获得10
1秒前
神外王001完成签到 ,获得积分10
1秒前
6秒前
你是谁完成签到,获得积分10
7秒前
majf完成签到,获得积分10
8秒前
linhanwenzhou完成签到,获得积分10
8秒前
JSY关注了科研通微信公众号
8秒前
853225598完成签到,获得积分10
8秒前
798完成签到,获得积分10
9秒前
善学以致用应助董怼怼采纳,获得10
9秒前
妍儿完成签到,获得积分20
10秒前
隐形曼青应助高大的水壶采纳,获得10
10秒前
马哥二弟无敌完成签到 ,获得积分10
11秒前
12秒前
Florencia完成签到,获得积分10
12秒前
务实颜完成签到 ,获得积分10
12秒前
12秒前
amberzyc应助小远采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
Rondab应助小猪采纳,获得30
15秒前
DLDL完成签到,获得积分10
15秒前
16秒前
沧海云完成签到 ,获得积分10
16秒前
发嗲的迎天完成签到 ,获得积分10
17秒前
hahaha发布了新的文献求助10
18秒前
小马甲应助zx0914采纳,获得10
18秒前
阳光保温杯完成签到 ,获得积分10
18秒前
微冷潇一应助mo采纳,获得10
19秒前
顺心凝天完成签到,获得积分10
19秒前
yishiqi10086发布了新的文献求助10
20秒前
何相逢应助科研通管家采纳,获得10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
予修应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029