Impacts of Different Satellite‐Based Precipitation Signature Errors on Hydrological Modeling Performance Across China

降水 环境科学 气候学 卫星 签名(拓扑) 中国 气象学 地理 地质学 数学 几何学 考古 航空航天工程 工程类
作者
Chiyuan Miao,Jiaojiao Gou,Jinlong Hu,Qingyun Duan
出处
期刊:Earth’s Future [American Geophysical Union]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004954
摘要

Abstract The quasi‐global availability of satellite‐based precipitation products (SPPs) holds significant potential for improving hydrological modeling skill. However, limited knowledge exists concerning the impacts of different SPP error type on hydrological modeling skill and their sensitivity across different climate zones. In this study, forcing data sets from 10 SPPs were collected to drive hydrological models during the period 2001–2018 for 366 catchments across China. Here, we analyze the impact of the SPP errors associated with different precipitation intensities (light, moderate, and heavy) and different precipitation signatures (magnitude, variance, and occurrence) on the performance of hydrological simulations, and rank the sensitivities of SPPs errors for four major Köppen‐Geiger climate zones. The results show that heavy precipitation in SPPs is generally associated with higher errors than light and moderate precipitation when compared to gauge‐based precipitation observations, but hydrological model skill is more sensitive to errors from moderate precipitation than from heavy precipitation. The probability of moderate precipitation detection was identified as the most sensitive metric in determining hydrological model performance, with sensitivities of 0.58, 0.39, 0.59, and 0.47 in the temperate, boreal, arid, and highland climate zones, respectively. The variance error and magnitude error for heavy precipitation from SPPs were also identified as sensitive factors for hydrological modeling in the temperate and arid climate zones, respectively. These findings are crucial for enhancing the understanding of interactions between SPPs uncertainty and hydrological simulations, leading to improved data accuracy of precipitation forcing and the identification of appropriate SPPs for hydrological simulation in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小虫完成签到,获得积分10
2秒前
nianxunxi完成签到,获得积分10
3秒前
CipherSage应助一颗椰子糖耶采纳,获得10
3秒前
4秒前
慕青应助叶子采纳,获得10
5秒前
6秒前
无花果应助漂亮白枫采纳,获得10
8秒前
dormraider完成签到,获得积分10
8秒前
9秒前
10秒前
12秒前
ppwl完成签到,获得积分10
13秒前
13秒前
万能图书馆应助bbh采纳,获得10
14秒前
星辰大海应助bbh采纳,获得10
14秒前
Lucas应助bbh采纳,获得10
14秒前
希望天下0贩的0应助bbh采纳,获得10
14秒前
充电宝应助bbh采纳,获得10
14秒前
所所应助bbh采纳,获得10
14秒前
完美世界应助bbh采纳,获得10
14秒前
SciGPT应助bbh采纳,获得10
14秒前
酷波er应助bbh采纳,获得10
14秒前
爱宝乐宝福宝应助bbh采纳,获得10
14秒前
16秒前
17秒前
好消息发布了新的文献求助20
18秒前
18秒前
一直向前发布了新的文献求助10
21秒前
如意的泥猴桃完成签到,获得积分10
23秒前
土拨鼠完成签到 ,获得积分10
23秒前
24秒前
科目三应助林好事采纳,获得10
24秒前
叶子完成签到,获得积分10
24秒前
24秒前
Newt发布了新的文献求助10
25秒前
27秒前
李健应助青黛采纳,获得10
28秒前
小四发布了新的文献求助10
31秒前
Sky36001发布了新的文献求助20
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190