Impacts of Different Satellite‐Based Precipitation Signature Errors on Hydrological Modeling Performance Across China

降水 环境科学 气候学 卫星 签名(拓扑) 中国 气象学 地理 地质学 数学 几何学 工程类 航空航天工程 考古
作者
Chiyuan Miao,Jiaojiao Gou,Jinlong Hu,Qingyun Duan
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004954
摘要

Abstract The quasi‐global availability of satellite‐based precipitation products (SPPs) holds significant potential for improving hydrological modeling skill. However, limited knowledge exists concerning the impacts of different SPP error type on hydrological modeling skill and their sensitivity across different climate zones. In this study, forcing data sets from 10 SPPs were collected to drive hydrological models during the period 2001–2018 for 366 catchments across China. Here, we analyze the impact of the SPP errors associated with different precipitation intensities (light, moderate, and heavy) and different precipitation signatures (magnitude, variance, and occurrence) on the performance of hydrological simulations, and rank the sensitivities of SPPs errors for four major Köppen‐Geiger climate zones. The results show that heavy precipitation in SPPs is generally associated with higher errors than light and moderate precipitation when compared to gauge‐based precipitation observations, but hydrological model skill is more sensitive to errors from moderate precipitation than from heavy precipitation. The probability of moderate precipitation detection was identified as the most sensitive metric in determining hydrological model performance, with sensitivities of 0.58, 0.39, 0.59, and 0.47 in the temperate, boreal, arid, and highland climate zones, respectively. The variance error and magnitude error for heavy precipitation from SPPs were also identified as sensitive factors for hydrological modeling in the temperate and arid climate zones, respectively. These findings are crucial for enhancing the understanding of interactions between SPPs uncertainty and hydrological simulations, leading to improved data accuracy of precipitation forcing and the identification of appropriate SPPs for hydrological simulation in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助斑驳的落叶采纳,获得10
2秒前
My完成签到 ,获得积分20
3秒前
zhl完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Jiang发布了新的文献求助10
4秒前
超级白昼发布了新的文献求助30
4秒前
dachengzi完成签到,获得积分10
4秒前
8Qq1NV完成签到,获得积分10
4秒前
顺利平文发布了新的文献求助10
5秒前
5秒前
yy完成签到,获得积分20
6秒前
6秒前
Leah完成签到,获得积分10
7秒前
7秒前
7秒前
qq应助张张张采纳,获得10
7秒前
Max完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
一条裸游的鱼完成签到,获得积分10
9秒前
科研通AI2S应助稍晚些采纳,获得10
10秒前
科研通AI2S应助稍晚些采纳,获得10
10秒前
领导范儿应助稍晚些采纳,获得10
10秒前
欣于所遇完成签到,获得积分10
10秒前
天天快乐应助欣喜面包采纳,获得10
10秒前
科研小白发布了新的文献求助10
10秒前
11秒前
光锥发布了新的文献求助10
11秒前
ashram完成签到,获得积分10
11秒前
12秒前
12秒前
zzz发布了新的文献求助10
13秒前
August发布了新的文献求助10
14秒前
一丢丢完成签到,获得积分10
14秒前
快乐小韩发布了新的文献求助10
14秒前
16秒前
在水一方应助轩一哥采纳,获得10
16秒前
独白完成签到,获得积分10
16秒前
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221784
求助须知:如何正确求助?哪些是违规求助? 2870476
关于积分的说明 8170735
捐赠科研通 2537406
什么是DOI,文献DOI怎么找? 1369415
科研通“疑难数据库(出版商)”最低求助积分说明 645510
邀请新用户注册赠送积分活动 619208