What can we learn from machine learning studies on flow diverter aneurysm embolization? A systematic review

机器学习 人工智能 支持向量机 决策树 随机森林 逻辑回归 分流器 人工神经网络 动脉瘤 医学 计算机科学 放射科
作者
Esref Alperen Bayraktar,Jonathan Cortese,Mohamed Sobhi Jabal,Sherief Ghozy,Atakan Orscelik,Cem Bilgin,Ramanathan Kadirvel,Waleed Brinjikji,David F Kallmes
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022147
标识
DOI:10.1136/jnis-2024-022147
摘要

Background As the use of flow diverters has expanded in recent years, predicting successful outcomes has become more challenging for certain aneurysms. Objective To provide neurointerventionalists with an understanding of the available machine learning algorithms for predicting the success of flow diverters in occluding aneurysms. Methods This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the four major medical databases (PubMed, Embase, Scopus, Web of Science) were screened. The study included original research articles that evaluated the predictive abilities of various machine learning algorithms for determining the success of flow diverters in achieving aneurysm occlusion. Results Five studies out of 217 were included based on our criteria. The included studies used various variables (patient demographics, aneurysm and parent artery characteristics, flow diverter and hemodynamic-related features, and angiographic parametric imaging) to predict flow diverter treatment outcomes. The machine learning algorithms used, along with their respective accuracy rates, were as follows: logistic regression (61% and 85%), support vector machine (88%), Gaussian support vector machine (90%), linear support vector machine (85%), decision tree (80%), random forest (87%), k-nearest neighbors (83% and 85%), XGBoost (87%), CatBoost (86%), deep neural networks (77.9%), and recurrent neural networks (74%).Two studies trained the machine learning models with both all features and the most significant features. Both studies observed that the accuracy of machine learning models decreased by removing the insignificant features. Conclusion The current literature indicates that machine learning algorithms can be trained to predict the success of flow diverters with an accuracy of up to 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯子不风完成签到,获得积分10
刚刚
王的江完成签到,获得积分20
刚刚
牛马他爹完成签到,获得积分10
刚刚
刚刚
1秒前
文文发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
yqsf789发布了新的文献求助10
4秒前
Criminology34应助文文采纳,获得20
4秒前
起床做核酸完成签到,获得积分10
5秒前
5秒前
5秒前
李健的小迷弟应助wyd222采纳,获得10
6秒前
鱼辞发布了新的文献求助10
6秒前
6秒前
bkagyin应助青青草原阿懒采纳,获得10
7秒前
畅快黎昕发布了新的文献求助30
7秒前
7秒前
青筠发布了新的文献求助10
7秒前
8秒前
善学以致用应助老地方采纳,获得10
9秒前
lxl完成签到,获得积分10
9秒前
舒适的尔容完成签到,获得积分20
9秒前
zds发布了新的文献求助10
10秒前
小七发布了新的文献求助10
10秒前
10秒前
要多喝水发布了新的文献求助50
11秒前
CipherSage应助yqsf789采纳,获得10
11秒前
11秒前
明理的蜗牛完成签到,获得积分10
11秒前
雨灵发布了新的文献求助10
11秒前
丘比特应助安然采纳,获得10
12秒前
111111发布了新的文献求助10
12秒前
乐乐应助喜悦的铭采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
gxcfdc发布了新的文献求助30
14秒前
Leon完成签到,获得积分10
15秒前
浮游应助小蚂蚁采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492