What can we learn from machine learning studies on flow diverter aneurysm embolization? A systematic review

机器学习 人工智能 支持向量机 决策树 随机森林 逻辑回归 分流器 人工神经网络 动脉瘤 医学 计算机科学 放射科
作者
Esref Alperen Bayraktar,Jonathan Cortese,Mohamed Sobhi Jabal,Sherief Ghozy,Atakan Orscelik,Cem Bilgin,Ramanathan Kadirvel,Waleed Brinjikji,David F Kallmes
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022147
标识
DOI:10.1136/jnis-2024-022147
摘要

Background As the use of flow diverters has expanded in recent years, predicting successful outcomes has become more challenging for certain aneurysms. Objective To provide neurointerventionalists with an understanding of the available machine learning algorithms for predicting the success of flow diverters in occluding aneurysms. Methods This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the four major medical databases (PubMed, Embase, Scopus, Web of Science) were screened. The study included original research articles that evaluated the predictive abilities of various machine learning algorithms for determining the success of flow diverters in achieving aneurysm occlusion. Results Five studies out of 217 were included based on our criteria. The included studies used various variables (patient demographics, aneurysm and parent artery characteristics, flow diverter and hemodynamic-related features, and angiographic parametric imaging) to predict flow diverter treatment outcomes. The machine learning algorithms used, along with their respective accuracy rates, were as follows: logistic regression (61% and 85%), support vector machine (88%), Gaussian support vector machine (90%), linear support vector machine (85%), decision tree (80%), random forest (87%), k-nearest neighbors (83% and 85%), XGBoost (87%), CatBoost (86%), deep neural networks (77.9%), and recurrent neural networks (74%).Two studies trained the machine learning models with both all features and the most significant features. Both studies observed that the accuracy of machine learning models decreased by removing the insignificant features. Conclusion The current literature indicates that machine learning algorithms can be trained to predict the success of flow diverters with an accuracy of up to 90%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈陈发布了新的文献求助10
刚刚
刚刚
自己完成签到,获得积分10
1秒前
小胡发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
小烦同学发布了新的文献求助10
1秒前
1秒前
yxlsunny完成签到,获得积分10
1秒前
2秒前
2秒前
Elijah完成签到,获得积分10
2秒前
qsq发布了新的文献求助10
2秒前
Monster完成签到,获得积分10
2秒前
yuanice999完成签到 ,获得积分10
2秒前
林夏发布了新的文献求助10
2秒前
2秒前
jesieniu完成签到,获得积分10
2秒前
酷波er应助LANQ采纳,获得10
3秒前
顾矜应助Beginner采纳,获得10
3秒前
笑笑完成签到 ,获得积分10
3秒前
隐形曼青应助大力思雁采纳,获得10
4秒前
4秒前
wyb发布了新的文献求助10
4秒前
乐乐应助李文浩采纳,获得10
4秒前
袁青寒发布了新的文献求助10
4秒前
4秒前
慕青应助hif1a采纳,获得10
4秒前
4秒前
Shan完成签到,获得积分10
5秒前
陈广辉发布了新的文献求助10
6秒前
6秒前
6秒前
幽默厉发布了新的文献求助10
6秒前
6秒前
MRu发布了新的文献求助10
6秒前
QiongBai520完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873