What can we learn from machine learning studies on flow diverter aneurysm embolization? A systematic review

机器学习 人工智能 支持向量机 决策树 随机森林 逻辑回归 分流器 人工神经网络 动脉瘤 医学 计算机科学 放射科
作者
Esref Alperen Bayraktar,Jonathan Cortese,Mohamed Sobhi Jabal,Sherief Ghozy,Atakan Orscelik,Cem Bilgin,Ramanathan Kadirvel,Waleed Brinjikji,David F Kallmes
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022147
标识
DOI:10.1136/jnis-2024-022147
摘要

Background As the use of flow diverters has expanded in recent years, predicting successful outcomes has become more challenging for certain aneurysms. Objective To provide neurointerventionalists with an understanding of the available machine learning algorithms for predicting the success of flow diverters in occluding aneurysms. Methods This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the four major medical databases (PubMed, Embase, Scopus, Web of Science) were screened. The study included original research articles that evaluated the predictive abilities of various machine learning algorithms for determining the success of flow diverters in achieving aneurysm occlusion. Results Five studies out of 217 were included based on our criteria. The included studies used various variables (patient demographics, aneurysm and parent artery characteristics, flow diverter and hemodynamic-related features, and angiographic parametric imaging) to predict flow diverter treatment outcomes. The machine learning algorithms used, along with their respective accuracy rates, were as follows: logistic regression (61% and 85%), support vector machine (88%), Gaussian support vector machine (90%), linear support vector machine (85%), decision tree (80%), random forest (87%), k-nearest neighbors (83% and 85%), XGBoost (87%), CatBoost (86%), deep neural networks (77.9%), and recurrent neural networks (74%).Two studies trained the machine learning models with both all features and the most significant features. Both studies observed that the accuracy of machine learning models decreased by removing the insignificant features. Conclusion The current literature indicates that machine learning algorithms can be trained to predict the success of flow diverters with an accuracy of up to 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助AKK采纳,获得10
2秒前
科研菜鸡完成签到,获得积分10
2秒前
12发布了新的文献求助10
3秒前
4秒前
独特的完成签到,获得积分10
5秒前
6秒前
18621058639完成签到,获得积分10
8秒前
独特的发布了新的文献求助10
9秒前
干净的寒天完成签到,获得积分10
9秒前
宿刚发布了新的文献求助10
9秒前
老铁完成签到 ,获得积分10
11秒前
风铃发布了新的文献求助30
13秒前
15秒前
YOLO发布了新的文献求助10
16秒前
临水思长发布了新的文献求助10
18秒前
18秒前
LALball发布了新的文献求助100
19秒前
19秒前
复成完成签到 ,获得积分10
19秒前
李锐完成签到,获得积分10
21秒前
21秒前
Xiebro发布了新的文献求助10
22秒前
xiaozhao完成签到,获得积分10
22秒前
joinn发布了新的文献求助200
24秒前
liiiiiii发布了新的文献求助10
26秒前
包容新蕾发布了新的文献求助10
26秒前
研友_qZ6qAn发布了新的文献求助10
26秒前
OxO完成签到,获得积分10
27秒前
洁净的迎曼完成签到,获得积分10
30秒前
共享精神应助缇娜采纳,获得10
32秒前
Lucas应助OKO采纳,获得10
35秒前
婉腾完成签到,获得积分10
35秒前
郑健华完成签到,获得积分10
35秒前
40秒前
41秒前
所所应助Skuld采纳,获得10
42秒前
研友_VZG7GZ应助YXIAN采纳,获得10
42秒前
43秒前
路白发布了新的文献求助10
44秒前
郑健华发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111