机器学习
人工智能
支持向量机
决策树
随机森林
逻辑回归
分流器
人工神经网络
动脉瘤
医学
计算机科学
放射科
作者
Esref Alperen Bayraktar,Jonathan Cortese,Mohamed Sobhi Jabal,Sherief Ghozy,Atakan Orscelik,Cem Bilgin,Ramanathan Kadirvel,Waleed Brinjikji,David F Kallmes
标识
DOI:10.1136/jnis-2024-022147
摘要
Background As the use of flow diverters has expanded in recent years, predicting successful outcomes has become more challenging for certain aneurysms. Objective To provide neurointerventionalists with an understanding of the available machine learning algorithms for predicting the success of flow diverters in occluding aneurysms. Methods This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the four major medical databases (PubMed, Embase, Scopus, Web of Science) were screened. The study included original research articles that evaluated the predictive abilities of various machine learning algorithms for determining the success of flow diverters in achieving aneurysm occlusion. Results Five studies out of 217 were included based on our criteria. The included studies used various variables (patient demographics, aneurysm and parent artery characteristics, flow diverter and hemodynamic-related features, and angiographic parametric imaging) to predict flow diverter treatment outcomes. The machine learning algorithms used, along with their respective accuracy rates, were as follows: logistic regression (61% and 85%), support vector machine (88%), Gaussian support vector machine (90%), linear support vector machine (85%), decision tree (80%), random forest (87%), k-nearest neighbors (83% and 85%), XGBoost (87%), CatBoost (86%), deep neural networks (77.9%), and recurrent neural networks (74%).Two studies trained the machine learning models with both all features and the most significant features. Both studies observed that the accuracy of machine learning models decreased by removing the insignificant features. Conclusion The current literature indicates that machine learning algorithms can be trained to predict the success of flow diverters with an accuracy of up to 90%.
科研通智能强力驱动
Strongly Powered by AbleSci AI