What can we learn from machine learning studies on flow diverter aneurysm embolization? A systematic review

机器学习 人工智能 支持向量机 决策树 随机森林 逻辑回归 分流器 人工神经网络 动脉瘤 医学 计算机科学 放射科
作者
Esref Alperen Bayraktar,Jonathan Cortese,Mohamed Sobhi Jabal,Sherief Ghozy,Atakan Orscelik,Cem Bilgin,Ramanathan Kadirvel,Waleed Brinjikji,David F Kallmes
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022147
标识
DOI:10.1136/jnis-2024-022147
摘要

Background As the use of flow diverters has expanded in recent years, predicting successful outcomes has become more challenging for certain aneurysms. Objective To provide neurointerventionalists with an understanding of the available machine learning algorithms for predicting the success of flow diverters in occluding aneurysms. Methods This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the four major medical databases (PubMed, Embase, Scopus, Web of Science) were screened. The study included original research articles that evaluated the predictive abilities of various machine learning algorithms for determining the success of flow diverters in achieving aneurysm occlusion. Results Five studies out of 217 were included based on our criteria. The included studies used various variables (patient demographics, aneurysm and parent artery characteristics, flow diverter and hemodynamic-related features, and angiographic parametric imaging) to predict flow diverter treatment outcomes. The machine learning algorithms used, along with their respective accuracy rates, were as follows: logistic regression (61% and 85%), support vector machine (88%), Gaussian support vector machine (90%), linear support vector machine (85%), decision tree (80%), random forest (87%), k-nearest neighbors (83% and 85%), XGBoost (87%), CatBoost (86%), deep neural networks (77.9%), and recurrent neural networks (74%).Two studies trained the machine learning models with both all features and the most significant features. Both studies observed that the accuracy of machine learning models decreased by removing the insignificant features. Conclusion The current literature indicates that machine learning algorithms can be trained to predict the success of flow diverters with an accuracy of up to 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅梅王完成签到,获得积分10
1秒前
好了发布了新的文献求助10
2秒前
Tingting发布了新的文献求助10
4秒前
7秒前
auraLyV完成签到,获得积分10
7秒前
Skywalker完成签到,获得积分10
8秒前
1953发布了新的文献求助10
10秒前
寒冷的孤云完成签到,获得积分10
12秒前
13秒前
橘子发布了新的文献求助10
14秒前
15秒前
16秒前
intangible发布了新的文献求助10
16秒前
脑洞疼应助cjh采纳,获得10
17秒前
李健的小迷弟应助大佬采纳,获得10
17秒前
在水一方应助大佬采纳,获得10
17秒前
有光光光光光光完成签到,获得积分10
19秒前
5555关注了科研通微信公众号
19秒前
rosee完成签到,获得积分10
20秒前
Lang777发布了新的文献求助10
20秒前
nonTUT发布了新的文献求助10
21秒前
pwy发布了新的文献求助10
22秒前
22秒前
完美世界应助Tingting采纳,获得10
22秒前
小象完成签到,获得积分20
23秒前
24秒前
pluto应助ying采纳,获得10
25秒前
烟花应助nonTUT采纳,获得10
26秒前
ccc完成签到 ,获得积分10
28秒前
28秒前
小象发布了新的文献求助10
28秒前
jjjj发布了新的文献求助10
30秒前
高春雷完成签到,获得积分20
31秒前
贤惠的早晨完成签到,获得积分20
31秒前
鱼yu完成签到,获得积分10
32秒前
毛豆应助溪秋白采纳,获得10
33秒前
sunshine完成签到,获得积分10
34秒前
34秒前
35秒前
威武的rotlight完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589