Hybridization of carbon nanotubes (CNTs) and manganese dioxide (MnO2) integrates the biocompatibility and outstanding electrocatalytic activity of MnO2 with the exceptional conductivity of CNTs, thus providing a superior synergistic sensing platform for the detection of biomolecules. However, the existing methods for synthesizing MnO2/CNT hybrids are complex and inefficient, resulting in low yields and limited surface functionalities. Hence, in this study, we present a low-cost and ultrafast solid-phase synthesis of the MnO2/CNT hybrid using a facile microwave technique to detect a crucial biomolecule bilirubin. The successful synthesis of the MnO2/CNT hybrid is confirmed through characteristic Raman and X-ray diffraction peaks, while morphology is analyzed by imaging techniques such as FESEM and HRTEM. The MnO2/CNT/nickel foam (NF) sensor is thereafter used for the electrochemical detection of bilirubin. The sensor demonstrates a wide linear detection range from 10 nM to 1 mM, with a sensitivity of 6.87 mA nM–1 cm–2 toward bilirubin, as determined through the differential pulse voltammetry technique. The lower limit of detection is noted at 3.3 nM (=3.3 S/m). Furthermore, the as-fabricated sensor showcases high selectivity against the interfering species. Real-time analysis conducted in simulated blood serum using the standard addition method reveals an outstanding recovery percentage of approximately 98%. The conductive MnO2/CNT hybrid interacts robustly with bilirubin, aided by the porous NF substrate for stability, catalytic activity, and rapid electron transfer, enabling sensitive bilirubin detection. The work provides an ultrafast, low-cost, and high-yield solid-phase microwave synthesis of MnO2/CNT hybrid material and broadens its application in the detection of biological specimens for clinical diagnosis and biomedical research.