Physical Internet Hub-Integrated Drone Logistics Model: Optimizing Cost and Energy Efficiency for Urban Delivery Systems

无人机 互联网 高效能源利用 业务 城市物流 运输工程 环境经济学 计算机科学 工程类 经济 万维网 遗传学 电气工程 生物
作者
Murugaiyan Pachayappan,Tanmoy Kundu,Rohit Kapoor,Sundar Rengasamy,Jiuh‐Biing Sheu
标识
DOI:10.2139/ssrn.5094252
摘要

Drones are revolutionizing urban logistics by enhancing last-mile delivery efficiency and speed. This study focuses on integrating drones within the Physical Internet (PI) framework, a paradigm aimed at optimizing goods movement, through the development of the Physical Internet Hub-Integrated Drone Logistics (PI-HI-DL) model. The model minimizes operational costs by optimizing delivery routes and is formulated as a Mixed-Integer Linear Programming (MILP) problem. To address the computational complexity of the model, a tailored Hybrid Genetic Algorithm (HGA) is introduced. The HGA features two novel components: the Adaptive Insertion and Allocation (AIA) heuristic and the Hybrid Heuristic Crossover (HHX) operator. The AIA heuristic enables real-time synchronization of drone routes, energy consumption, and the dynamic positioning of open urban hubs (OUH) and open recharge stations (ORS), ensuring adaptability to changing conditions. The HHX operator incorporates problem-specific knowledge to improve solution quality during crossover operations, enhancing the algorithm's efficiency and scalability. The study compares two scenarios: a drone-only model and the PI-HI-DL model. Results demonstrate the PI-HI-DL model's superior performance, particularly in solving both small and large problem instances. A comparative analysis between the exact MILP approach and the HGA-based metaheuristic highlights the trade-offs between computational efficiency and solution quality. Further, results from a real-world case instance reveal that the PI-HI-DL model achieves up to 9% energy cost savings compared to the drone-only scenario. These findings underscore the potential of integrating drones within PI networks to enhance cost-effectiveness and energy efficiency, advancing sustainable and resilient urban logistics systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不乐完成签到,获得积分20
1秒前
2秒前
白露完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
科研通AI2S应助xuxuxuxu采纳,获得10
3秒前
青梅完成签到,获得积分10
3秒前
3秒前
神启完成签到 ,获得积分10
3秒前
超帅沂发布了新的文献求助10
3秒前
田様应助嘿嘿嘿采纳,获得10
4秒前
闹铃儿完成签到,获得积分20
4秒前
整齐怡发布了新的文献求助20
4秒前
枳甜完成签到,获得积分10
4秒前
lin发布了新的文献求助30
4秒前
dzdzn完成签到 ,获得积分10
4秒前
第三发布了新的文献求助20
5秒前
5秒前
科研汪完成签到,获得积分10
5秒前
小二郎应助张益权采纳,获得10
5秒前
FashionBoy应助时尚的莛采纳,获得10
5秒前
汉堡包应助左友铭采纳,获得10
5秒前
5秒前
6秒前
清秀苗条完成签到,获得积分10
6秒前
6秒前
6秒前
杳鸢应助科研小民工采纳,获得10
7秒前
lanseyangguang完成签到,获得积分10
7秒前
7秒前
玩命的谷槐完成签到,获得积分20
7秒前
我鬼混回来了完成签到 ,获得积分10
7秒前
wh完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
22发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140