Literary characters and GPT-4: from William Shakespeare to Elena Ferrante

艺术 历史 文学类
作者
Gabriel Abrams
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
标识
DOI:10.1093/llc/fqae079
摘要

Abstract We prompted GPT-4 (a large language model) to play the Dictator game, a classic behavioral economics experiment, as 148 literary fictional characters from the 17th century to the 21st century. There is a general and mainly monotonic decrease in selfish behavior over time in literary characters. Fifty per cent of the decisions of characters from the 17th century are selfish compared to just 19 per cent from the 21st century. Historical literary characters have a surprisingly strong net positive valence across 2,785 personality traits generated by GPT-4 (3.2× more positive than negative). However, valence varied significantly across centuries. Positive traits were 10× more common than negative in the 21st century, but just 1.8× more common in the 17th century. ‘Empathetic’, ‘fair’, and ‘selfless’, were the most overweight traits in the 20th century. Conversely, ‘manipulative’, ‘ambitious’, and ‘ruthless’ were the most overweight traits in the 17th century. Male characters were more selfish than female characters. The skew was highest in the 17th century, where selfish decisions for male and female were 62 and 20 per cent, respectively. This analysis also offers a quantifiable partial Turing test. The key human-like characteristics of the model are the zero price effect, lack of spitefulness, and altruism. However, the model does not have human sensitivity to relative ordinal position and has significantly lower price elasticity than humans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
在水一方应助深情世立采纳,获得10
2秒前
2秒前
王m完成签到 ,获得积分10
2秒前
5秒前
6秒前
6秒前
夜航鸟发布了新的文献求助10
7秒前
7秒前
wei发布了新的文献求助10
8秒前
文艺怀蝶发布了新的文献求助10
12秒前
不吃香菜发布了新的文献求助10
12秒前
852应助Amiee采纳,获得10
13秒前
Echo完成签到,获得积分0
13秒前
18秒前
喵总完成签到,获得积分10
19秒前
研友_VZG7GZ应助褪色采纳,获得10
19秒前
20秒前
21秒前
猪猪hero应助wei采纳,获得10
21秒前
qzj发布了新的文献求助10
23秒前
小乐发布了新的文献求助10
25秒前
Q清风慕竹发布了新的文献求助10
26秒前
26秒前
nojivv完成签到,获得积分10
26秒前
Litm完成签到 ,获得积分10
27秒前
28秒前
kita完成签到,获得积分10
28秒前
qzj完成签到,获得积分10
28秒前
29秒前
LIKUN完成签到,获得积分10
29秒前
用心若镜2完成签到,获得积分10
30秒前
marry完成签到,获得积分10
31秒前
褪色发布了新的文献求助10
32秒前
枫落无霜发布了新的文献求助10
33秒前
33秒前
marry发布了新的文献求助10
34秒前
用心若镜2发布了新的文献求助10
34秒前
Jackie发布了新的文献求助10
38秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611