YOLOv8‐ESW: An Improved Oncomelania hupensis Detection Model

钉螺 计算机科学 生物 动物 蠕虫 血吸虫病
作者
Changcheng Wei,Juanyan Fang,Xu Zhu,Jinbao Meng,Zenglu Ye,Yipeng Wang,Tumennast Erdenebold
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (3)
标识
DOI:10.1002/cpe.8359
摘要

ABSTRACT Traditional Oncomelania hupensis detection relies on human eye observation, which results in reduced efficiency due to easy fatigue of the human eye and limited individual cognition, an improved YOLOv8 O. hupensis detection algorithm, YOLOv8‐ESW(expectation–maximization attention [EMA], Small Target Detection Layer, and Wise‐IoU), is proposed. The original dataset is augmented using the OpenCV library. To imitate image blur caused by motion jitter, salt and pepper, and Gaussian noise were added to the dataset; to imitate images from different angles captured by the camera in an instant, affine, translation, flip, and other transformations were performed on the original data, resulting in a total of 6000 images after data enhancement. Considering the insufficient feature fusion problem caused by lightweight convolution, We present the expectation–EMA module (E), which innovatively incorporates a coordinate attention mechanism and convolutional layers to introduce a specialized layer for small target detection (S). This design significantly improves the network's ability to synergize information from both superficial and deeper layers, better focusing on small target O. hupensis and occluded O. hupensis . To tackle the challenge of quality imbalance among O. hupensis samples, we employ the Wise‐IoU (WIoU) loss function (W). This approach uses a gradient gain distribution strategy and improves the model convergence speed and regression accuracy. The YOLOv8‐ESW model, with 16.8 million parameters and requiring 98.4 GFLOPS for computations, achieved a mAP of 92.74% when tested on the O. hupensis dataset, marking a 4.09% improvement over the baseline model. Comprehensive testing confirms the enhanced network's efficacy, significantly elevating O. hupensis detection precision, minimizing both missed and false detections, and fulfilling real‐time processing criteria. Compared with the current mainstream models, it has certain advantages in detection accuracy and has reference value for subsequent research in actual detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
刚刚
Orange应助买桃子去采纳,获得10
1秒前
hao253完成签到,获得积分10
1秒前
2秒前
搜集达人应助haohaohao采纳,获得10
3秒前
3秒前
科研通AI6应助hbhbj采纳,获得30
4秒前
4秒前
4秒前
万yt完成签到,获得积分10
4秒前
5秒前
6秒前
喜悦的虔完成签到,获得积分10
7秒前
成就忻完成签到,获得积分10
7秒前
77发布了新的文献求助10
8秒前
目白麦昆发布了新的文献求助10
8秒前
苹果隶发布了新的文献求助30
11秒前
安详的香完成签到,获得积分10
11秒前
Anlionseas完成签到,获得积分10
12秒前
LISU完成签到,获得积分10
12秒前
春鸮鸟完成签到 ,获得积分10
12秒前
bkagyin应助nadeem采纳,获得10
13秒前
顾矜应助淡淡绿草采纳,获得10
13秒前
13秒前
14秒前
顾矜应助hrpppp采纳,获得30
15秒前
17秒前
qq发布了新的文献求助80
17秒前
泯工发布了新的文献求助40
18秒前
gaoxinyi发布了新的文献求助50
21秒前
华仔应助努力搬砖采纳,获得10
21秒前
ablins发布了新的文献求助10
22秒前
酷波er应助小巧的不悔采纳,获得10
22秒前
23秒前
量子星尘发布了新的文献求助10
25秒前
负责冰凡完成签到,获得积分10
25秒前
满意的伊发布了新的文献求助10
26秒前
27秒前
28秒前
花陵发布了新的文献求助20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457979
求助须知:如何正确求助?哪些是违规求助? 4564101
关于积分的说明 14293675
捐赠科研通 4488908
什么是DOI,文献DOI怎么找? 2458773
邀请新用户注册赠送积分活动 1448706
关于科研通互助平台的介绍 1424393