亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Fire Detection of Cotton Picker Based on Improved Algorithm

粒子群优化 人工神经网络 算法 遗传算法 计算机科学 恒虚警率 预警系统 传感器融合 过程(计算) 火灾探测 人工智能 工程类 机器学习 建筑工程 电信 操作系统
作者
Zhai Shi,Fangwei Wu,Changjie Han,Dongdong Song
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (2): 564-564
标识
DOI:10.3390/s25020564
摘要

According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model. This algorithm includes the introduction of a mutation operator in the gray wolf algorithm to improve the search ability of the algorithm, and, at the same time, we introduce the PSO algorithm idea. The improved fusion algorithm is used as a learning algorithm to optimize the BP neural network, and the optimized network is used to process and predict the data collected from temperature and gas sensors, which effectively improves the accuracy of fire prediction. The sensor measurements were compared with the actual values to verify the effectiveness of the GWO-PSO-optimized BP neural network model. Once experimentally verified, the improved GWO-PSO algorithm achieves a correlation coefficient R of 0.96929, a prediction accuracy rate of 96.10%, and a prediction error rate of only 3.9%, while the system monitors an accurate early warning rate of 96.07%, and the false alarm and omission rates are both less than 5%. This study can detect cotton picker fires in real time and provide timely warnings, which provides a new method for the accurate detection of fires during the field operation of cotton pickers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助LINshan1993采纳,获得10
19秒前
52秒前
X_L_iang发布了新的文献求助10
56秒前
woxinyouyou完成签到,获得积分0
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
大轩完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助晚睡生采纳,获得10
3分钟前
fangyifang完成签到,获得积分10
3分钟前
3分钟前
zz发布了新的文献求助10
4分钟前
在水一方应助zz采纳,获得10
4分钟前
5分钟前
LINshan1993发布了新的文献求助10
5分钟前
无奈以南完成签到 ,获得积分10
5分钟前
LINshan1993完成签到,获得积分10
5分钟前
6分钟前
hugo发布了新的文献求助10
6分钟前
hugo完成签到,获得积分10
6分钟前
知行者完成签到 ,获得积分10
7分钟前
ldh032应助知行者采纳,获得10
7分钟前
Hans完成签到,获得积分10
7分钟前
zm完成签到,获得积分10
8分钟前
10分钟前
晚睡生发布了新的文献求助10
10分钟前
史前巨怪完成签到,获得积分10
12分钟前
科研通AI5应助其实采纳,获得10
12分钟前
12分钟前
L_MD完成签到,获得积分10
13分钟前
搜集达人应助伶俐寒凝采纳,获得30
13分钟前
14分钟前
深情安青应助Noob_saibot采纳,获得10
14分钟前
其实发布了新的文献求助10
14分钟前
Oracle应助linear0525采纳,获得50
14分钟前
科研通AI5应助其实采纳,获得10
14分钟前
高高的丹雪完成签到 ,获得积分10
14分钟前
15分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763577
求助须知:如何正确求助?哪些是违规求助? 3308141
关于积分的说明 10142736
捐赠科研通 3023232
什么是DOI,文献DOI怎么找? 1659471
邀请新用户注册赠送积分活动 792698
科研通“疑难数据库(出版商)”最低求助积分说明 755106