亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning and metabolomics identify biomarkers associated with the disease extent of ulcerative colitis

溃疡性结肠炎 医学 Lasso(编程语言) 炎症性肠病 机器学习 代谢组学 人工智能 随机森林 OPL公司 支持向量机 疾病 弹性网正则化 特征选择 线性判别分析 接收机工作特性 内科学 胃肠病学 生物信息学 计算机科学 生物 氢键 化学 有机化学 分子 万维网
作者
Changchang Ge,Yi Lü,Zhaofeng Shen,Yizhou Lu,Xiaojuan Liu,Mengyuan Zhang,Yijing Liu,Hong Shen,Lei Zhu
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
标识
DOI:10.1093/ecco-jcc/jjaf020
摘要

Abstract Background and aims Ulcerative colitis (UC) is a metabolism-related chronic intestinal inflammatory disease. Disease extent is a key parameter of UC. Using serum metabolic profiling to identify non-invasive biomarkers of disease extent may inform therapeutic decisions and risk stratification. Methods The orthogonal partial least squares–discriminant analysis (OPLS-DA) was performed to identify the metabolites. Least absolute shrinkage and selection operator (LASSO) regression, random forest–recursive feature elimination (RF-RFE), and support vector machine–recursive feature elimination (SVM-RFE) algorithms were used to screen metabolites. Five machine learning algorithms (XGboost, KNN, NB, RF, and SVM) were used to construct prediction model. Results A total of 220 differential metabolites between the patients with UC and healthy controls (HCs) were confirmed by the OPLS-DA model. Machine learning screened eight essential metabolites for distinguishing patients with UC from HCs. A total of 23, 6, and 6 differential metabolites were obtained through machine learning between group E1 and E2, E1 and E3, and E2 and E3. The RF model had a prediction accuracy of up to 100% in all three training sets. The serum levels of tridecanoic acid were significantly lower and pelargonic acid were significantly higher in patients with extensive colitis than in the other groups. The serum level of asparaginyl valine in patients with rectal UC was significantly lower than that in E2 and E3 groups. Conclusions Our findings revealed the metabolic landscape of UC and identified biomarkers for different disease extents, confirming the value of metabolites in predicting the occurrence and progression of UC.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助一路向北采纳,获得10
25秒前
30秒前
35秒前
37秒前
sailingluwl完成签到,获得积分10
39秒前
58秒前
一路向北发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
一路向北完成签到,获得积分10
1分钟前
科目三应助Freya采纳,获得10
1分钟前
1分钟前
1分钟前
羊羊羊完成签到,获得积分10
1分钟前
刀特左发布了新的文献求助20
1分钟前
1分钟前
羊羊羊发布了新的文献求助10
1分钟前
刀特左完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
帅狗发布了新的文献求助10
2分钟前
赘婿应助帅狗采纳,获得10
2分钟前
星辰大海应助踢踢采纳,获得10
2分钟前
李健的小迷弟应助momo采纳,获得10
2分钟前
2分钟前
隐形问萍发布了新的文献求助10
2分钟前
我一定能上岸完成签到,获得积分10
2分钟前
2分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助直率的玉米采纳,获得10
3分钟前
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015697
关于积分的说明 8871659
捐赠科研通 2703398
什么是DOI,文献DOI怎么找? 1482265
科研通“疑难数据库(出版商)”最低求助积分说明 685172
邀请新用户注册赠送积分活动 679951