Integration of ML methods with CR model-based optical diagnostic for the estimation of electron temperature in Ga laser produced plasma

物理 等离子体 温度电子 电子 激光器 等离子体诊断 原子物理学 计算物理学 光学 核物理学
作者
Indhu Suresh,P.S.N.S.R. Srikar,R. K. Gangwar
出处
期刊:Physics of Plasmas [American Institute of Physics]
卷期号:31 (11)
标识
DOI:10.1063/5.0223030
摘要

Accelerated diagnostic of plasma plays a significant role in controlling and optimizing plasma-mediated processing, particularly for plasma with higher temporal and spatial gradients, such as laser produced plasma (LPP). In the present work, two advanced machine learning (ML) algorithms, random forest regression, and gradient boosting regression are integrated with noninvasive collisional radiative (CR) model-based optical diagnostics to facilitate accurate diagnostics. A comprehensive fine-structure resolved CR model framework is developed by incorporating our consistent cross section data obtained from the Relativistic Distorted Wave method [Suresh et al., “Fully relativistic distorted wave calculations of electron impact excitation of gallium atom: Cross sections relevant for plasma kinetic modelling,” Spectrochim. Acta B: At. Spectrosc. 213, 106860 (2024)]. An extensive dataset of CR model simulated intensities is created to train and test the ML methods. The present CR model is applied to characterize the Gallium LPP coupling with the optical emission spectroscopic measurements of Guo et al. [“Time-resolved spectroscopy analysis of Ga atom in laser induced plasma,” Laser Phys. 19, 1832–1837 (2009)] at different delay times. Further, a detailed correlation study of the line intensity ratios is performed to observe the qualitative behavior of the plasma parameters. The electron temperature results obtained from the CR model, ML, and line ratio methods were compared and found to be in excellent agreement. Overall, the present study demonstrates diagnostic approaches that can benefit the LPP community significantly by providing a rapid understanding of the plasma behavior across various operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悄悄睡觉完成签到 ,获得积分10
1秒前
定烜完成签到 ,获得积分10
2秒前
半夏完成签到,获得积分10
3秒前
111完成签到,获得积分10
5秒前
5秒前
华仔应助花花采纳,获得10
6秒前
6秒前
7秒前
今后应助nihaoxjm采纳,获得10
7秒前
7秒前
研究僧完成签到,获得积分20
7秒前
沉静的靖巧完成签到,获得积分20
9秒前
Cyan完成签到,获得积分10
9秒前
喵先生发布了新的文献求助10
9秒前
含糊的画板完成签到,获得积分10
9秒前
jj完成签到,获得积分10
9秒前
六月初八夜完成签到,获得积分10
10秒前
烟花应助生产队的LV采纳,获得10
10秒前
光亮的代萱完成签到,获得积分10
12秒前
Hammerdai发布了新的文献求助10
13秒前
bkagyin应助zk_orange采纳,获得10
13秒前
科研小南完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
Went完成签到,获得积分10
14秒前
15秒前
16秒前
yinyin发布了新的文献求助10
18秒前
18秒前
清脆香萱发布了新的文献求助10
18秒前
长亭发布了新的文献求助10
19秒前
bukeshuo完成签到,获得积分10
19秒前
Zsilu应助33采纳,获得10
19秒前
辰寒云阳完成签到,获得积分10
20秒前
uu完成签到,获得积分10
20秒前
21秒前
能干的向真应助齐小明采纳,获得10
21秒前
crazyrock完成签到,获得积分10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565