Integration of ML methods with CR model-based optical diagnostic for the estimation of electron temperature in Ga laser produced plasma

物理 等离子体 温度电子 电子 激光器 等离子体诊断 原子物理学 计算物理学 光学 核物理学
作者
Indhu Suresh,P.S.N.S.R. Srikar,R. K. Gangwar
出处
期刊:Physics of Plasmas [American Institute of Physics]
卷期号:31 (11)
标识
DOI:10.1063/5.0223030
摘要

Accelerated diagnostic of plasma plays a significant role in controlling and optimizing plasma-mediated processing, particularly for plasma with higher temporal and spatial gradients, such as laser produced plasma (LPP). In the present work, two advanced machine learning (ML) algorithms, random forest regression, and gradient boosting regression are integrated with noninvasive collisional radiative (CR) model-based optical diagnostics to facilitate accurate diagnostics. A comprehensive fine-structure resolved CR model framework is developed by incorporating our consistent cross section data obtained from the Relativistic Distorted Wave method [Suresh et al., “Fully relativistic distorted wave calculations of electron impact excitation of gallium atom: Cross sections relevant for plasma kinetic modelling,” Spectrochim. Acta B: At. Spectrosc. 213, 106860 (2024)]. An extensive dataset of CR model simulated intensities is created to train and test the ML methods. The present CR model is applied to characterize the Gallium LPP coupling with the optical emission spectroscopic measurements of Guo et al. [“Time-resolved spectroscopy analysis of Ga atom in laser induced plasma,” Laser Phys. 19, 1832–1837 (2009)] at different delay times. Further, a detailed correlation study of the line intensity ratios is performed to observe the qualitative behavior of the plasma parameters. The electron temperature results obtained from the CR model, ML, and line ratio methods were compared and found to be in excellent agreement. Overall, the present study demonstrates diagnostic approaches that can benefit the LPP community significantly by providing a rapid understanding of the plasma behavior across various operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整形月光刀完成签到 ,获得积分10
1秒前
1秒前
LeiX发布了新的文献求助10
2秒前
风度完成签到,获得积分10
2秒前
fmr完成签到,获得积分10
3秒前
cc完成签到,获得积分10
4秒前
充电宝应助暴躁的帽子采纳,获得10
4秒前
4秒前
lennon962464发布了新的文献求助10
4秒前
4秒前
mmm完成签到,获得积分20
5秒前
starofjlu给老张的求助进行了留言
5秒前
5秒前
zqz完成签到,获得积分20
6秒前
yolanda发布了新的文献求助10
6秒前
yxq完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
风度发布了新的文献求助10
8秒前
12秒前
Aurora的努力日记完成签到 ,获得积分10
12秒前
小长夜完成签到,获得积分10
12秒前
13秒前
sjh完成签到,获得积分10
13秒前
pudding发布了新的文献求助10
13秒前
yaooo发布了新的文献求助10
13秒前
misugi完成签到,获得积分10
14秒前
ruyuan发布了新的文献求助10
14秒前
你你你完成签到,获得积分10
14秒前
16秒前
hokuto应助遇事不决睡大觉采纳,获得10
17秒前
子小孙发布了新的文献求助10
18秒前
竹筏过海应助2531采纳,获得30
19秒前
逃之姚姚完成签到 ,获得积分10
19秒前
pudding完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655