Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CuCu发布了新的文献求助10
刚刚
默默善愁发布了新的文献求助10
1秒前
mojojo发布了新的文献求助10
1秒前
木木发布了新的文献求助10
1秒前
晓晖完成签到,获得积分10
1秒前
copper发布了新的文献求助10
2秒前
2秒前
3秒前
yeeming发布了新的文献求助30
3秒前
3秒前
selfevidbet完成签到,获得积分10
3秒前
cccr完成签到,获得积分20
4秒前
4秒前
进击的momo完成签到,获得积分10
4秒前
大大发布了新的文献求助10
4秒前
wensri完成签到,获得积分10
5秒前
科研通AI6应助可靠雪雪采纳,获得10
5秒前
白沙叶发布了新的文献求助10
5秒前
王小树完成签到,获得积分10
5秒前
愤怒的小鸟完成签到,获得积分10
5秒前
6秒前
lzc发布了新的文献求助10
6秒前
调皮的涵易完成签到,获得积分10
7秒前
7秒前
懒123发布了新的文献求助10
7秒前
潇潇发布了新的文献求助10
8秒前
深情安青应助端庄的夜蕾采纳,获得10
8秒前
在水一方应助CCsci采纳,获得10
8秒前
cccr发布了新的文献求助10
8秒前
万能图书馆应助赵亚南采纳,获得10
9秒前
9秒前
小巧的千筹关注了科研通微信公众号
9秒前
abbb完成签到,获得积分10
9秒前
852应助dj采纳,获得10
9秒前
9秒前
斯文败类应助whuyyz采纳,获得10
10秒前
可爱的函函应助goldNAN采纳,获得10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879