Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助hhh采纳,获得10
刚刚
粥粥应助蓝雨冰竹采纳,获得10
刚刚
刚刚
曹世纪发布了新的文献求助10
1秒前
Di完成签到,获得积分10
1秒前
1秒前
jopaul完成签到,获得积分10
1秒前
LX1005完成签到,获得积分10
2秒前
yu完成签到,获得积分10
2秒前
Orange应助yao chen采纳,获得10
2秒前
科研通AI6应助嘉嘉琦采纳,获得10
2秒前
勤恳的若风完成签到,获得积分10
3秒前
李家酥铺完成签到,获得积分20
3秒前
远远发布了新的文献求助10
3秒前
kefan_123完成签到,获得积分10
3秒前
3秒前
王思鲁完成签到,获得积分10
4秒前
Lin完成签到,获得积分10
4秒前
胖胖桑完成签到,获得积分20
4秒前
汉堡包应助lvwubin采纳,获得10
5秒前
是亲爱的小王完成签到,获得积分10
5秒前
6秒前
6秒前
虚影完成签到,获得积分10
6秒前
赵若琪发布了新的文献求助30
6秒前
十叶月完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
轻松一曲应助kndr10采纳,获得10
8秒前
1234发布了新的文献求助10
8秒前
情怀应助lanzinuo采纳,获得10
8秒前
llllll完成签到,获得积分10
9秒前
9秒前
10秒前
烟花应助海盐气泡水采纳,获得10
10秒前
10秒前
隐形曼青应助ww采纳,获得10
10秒前
星辰大海应助xh采纳,获得10
10秒前
Orange应助小蘑菇采纳,获得10
11秒前
sycsyc完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271