Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
阿夏完成签到,获得积分10
1秒前
1秒前
琳琳发布了新的文献求助10
1秒前
2秒前
2秒前
丁昆发布了新的文献求助10
2秒前
du_yehui发布了新的文献求助10
2秒前
科目三应助喜悦寻梅采纳,获得10
3秒前
动力小滋完成签到,获得积分10
3秒前
Chen完成签到,获得积分20
3秒前
xiaoliuyu完成签到,获得积分10
4秒前
5秒前
学业顺利完成签到,获得积分10
6秒前
6秒前
skj你考六级完成签到,获得积分10
7秒前
科研小扒菜完成签到,获得积分10
7秒前
7秒前
斯文败类应助ckl采纳,获得10
8秒前
sober发布了新的文献求助10
8秒前
9秒前
9秒前
琳琳完成签到,获得积分10
9秒前
江铭完成签到,获得积分10
10秒前
王灿灿应助深情的牛排采纳,获得50
10秒前
11秒前
Wenpandaen发布了新的文献求助10
11秒前
Tss完成签到,获得积分20
11秒前
Leonardi应助spring采纳,获得200
12秒前
打打应助wujiwuhui采纳,获得10
14秒前
情怀应助一郭红烧肉采纳,获得10
15秒前
16秒前
Shaw发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
活泼秋玲完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655