亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu完成签到,获得积分10
1秒前
月关完成签到 ,获得积分10
6秒前
晚街听风完成签到 ,获得积分10
15秒前
繁星背后完成签到 ,获得积分10
17秒前
18秒前
柠檬树发布了新的文献求助10
21秒前
无花果应助刘言采纳,获得10
28秒前
坚强觅珍完成签到 ,获得积分10
37秒前
43秒前
Lan完成签到 ,获得积分10
44秒前
欣慰小蕊完成签到,获得积分10
44秒前
CHORHIN发布了新的文献求助10
44秒前
Alpha完成签到 ,获得积分10
45秒前
47秒前
刘言发布了新的文献求助10
47秒前
宝贝完成签到 ,获得积分10
48秒前
49秒前
53秒前
zzy发布了新的文献求助10
53秒前
ll发布了新的文献求助10
54秒前
57秒前
57秒前
CodeCraft应助madoudou采纳,获得10
58秒前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助TT采纳,获得10
1分钟前
大龙完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Leonard应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
zfm发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535