亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DduYy完成签到,获得积分10
6秒前
MelonZ关注了科研通微信公众号
7秒前
善学以致用应助LeezZZZ采纳,获得10
9秒前
lizhoukan1完成签到,获得积分10
10秒前
felix完成签到,获得积分10
13秒前
19秒前
MelonZ发布了新的文献求助10
24秒前
Colo发布了新的文献求助10
26秒前
lin完成签到 ,获得积分10
29秒前
33秒前
36秒前
麻花阳完成签到,获得积分10
39秒前
海咲umi发布了新的文献求助10
39秒前
LeezZZZ发布了新的文献求助10
40秒前
JamesPei应助光轮2000采纳,获得10
45秒前
52秒前
光轮2000发布了新的文献求助10
56秒前
李海艳完成签到 ,获得积分10
1分钟前
路灯下的小伙完成签到,获得积分10
1分钟前
1分钟前
李健的小迷弟应助doctor2023采纳,获得10
1分钟前
优美紫槐应助小立采纳,获得10
1分钟前
NexusExplorer应助安详的中心采纳,获得10
1分钟前
华仔应助doctor2023采纳,获得10
1分钟前
1分钟前
poieu发布了新的文献求助30
1分钟前
顾矜应助满意的世界采纳,获得10
1分钟前
1分钟前
慕青应助qq采纳,获得10
1分钟前
优美紫槐应助小立采纳,获得10
1分钟前
1分钟前
zsyf发布了新的文献求助10
1分钟前
1分钟前
又声完成签到,获得积分10
1分钟前
安详的中心完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
丘比特应助lijingyi采纳,获得10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
无心的信封完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688339
关于积分的说明 14853279
捐赠科研通 4688566
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543