Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyu完成签到,获得积分10
刚刚
豆子发布了新的文献求助10
1秒前
1秒前
i7发布了新的文献求助10
1秒前
frank发布了新的文献求助10
1秒前
开放念云完成签到,获得积分20
2秒前
2秒前
复成发布了新的文献求助10
2秒前
2秒前
wangchaofk完成签到,获得积分10
2秒前
zhangzy发布了新的文献求助10
2秒前
Green发布了新的文献求助10
3秒前
Gamen完成签到,获得积分20
3秒前
guli完成签到,获得积分10
3秒前
3秒前
vothuong完成签到,获得积分10
3秒前
My发布了新的文献求助10
4秒前
定西完成签到,获得积分10
4秒前
4秒前
xuyang完成签到,获得积分10
4秒前
4秒前
Rufina0720发布了新的文献求助10
4秒前
ava完成签到,获得积分10
5秒前
朴素的向雁完成签到,获得积分10
5秒前
5秒前
大模型应助鱼鱼子999采纳,获得10
6秒前
lbc发布了新的文献求助10
6秒前
开放念云发布了新的文献求助10
6秒前
稳重诗珊发布了新的文献求助10
6秒前
teng123完成签到 ,获得积分10
7秒前
璐璐完成签到,获得积分10
7秒前
zhang发布了新的文献求助10
7秒前
gggggggbao发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
现代宝宝完成签到,获得积分10
10秒前
璐璐发布了新的文献求助10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262