Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt发布了新的文献求助10
刚刚
1秒前
2秒前
思维隋发布了新的文献求助10
2秒前
3秒前
yk123发布了新的文献求助10
4秒前
bkagyin应助优秀的枕头采纳,获得10
5秒前
从容不弱完成签到,获得积分10
5秒前
顺利毕业发布了新的文献求助10
5秒前
幸福大白发布了新的文献求助10
5秒前
5秒前
烂漫时完成签到,获得积分10
6秒前
饱满从露完成签到,获得积分10
7秒前
q792309106发布了新的文献求助10
7秒前
lxp发布了新的文献求助80
9秒前
成就的紫发布了新的文献求助10
9秒前
顺利毕业完成签到,获得积分10
10秒前
大模型应助超人采纳,获得10
12秒前
左嫣娆发布了新的文献求助10
13秒前
14秒前
17秒前
17秒前
17秒前
17秒前
19秒前
19秒前
20秒前
叶凡发布了新的文献求助10
20秒前
小王发布了新的文献求助10
21秒前
余姓懒发布了新的文献求助10
22秒前
22秒前
苏诗兰发布了新的文献求助10
24秒前
24秒前
现代孤晴完成签到,获得积分10
24秒前
AEROU完成签到 ,获得积分10
25秒前
搜集达人应助56565采纳,获得10
25秒前
26秒前
27秒前
zzt完成签到,获得积分20
28秒前
所所应助诚心谷南采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712