DGA-GNN: Dynamic Grouping Aggregation GNN for Fraud Detection

计算机科学
作者
Mingjiang Duan,Tongya Zheng,Yang Gao,Gang Wang,Zunlei Feng,Xinyu Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11820-11828
标识
DOI:10.1609/aaai.v38i10.29067
摘要

Fraud detection has increasingly become a prominent research field due to the dramatically increased incidents of fraud. The complex connections involving thousands, or even millions of nodes, present challenges for fraud detection tasks. Many researchers have developed various graph-based methods to detect fraud from these intricate graphs. However, those methods neglect two distinct characteristics of the fraud graph: the non-additivity of certain attributes and the distinguishability of grouped messages from neighbor nodes. This paper introduces the Dynamic Grouping Aggregation Graph Neural Network (DGA-GNN) for fraud detection, which addresses these two characteristics by dynamically grouping attribute value ranges and neighbor nodes. In DGA-GNN, we initially propose the decision tree binning encoding to transform non-additive node attributes into bin vectors. This approach aligns well with the GNN’s aggregation operation and avoids nonsensical feature generation. Furthermore, we devise a feedback dynamic grouping strategy to classify graph nodes into two distinct groups and then employ a hierarchical aggregation. This method extracts more discriminative features for fraud detection tasks. Extensive experiments on five datasets suggest that our proposed method achieves a 3% ~ 16% improvement over existing SOTA methods. Code is available at https://github.com/AtwoodDuan/DGA-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈睿毅发布了新的文献求助10
刚刚
路哈哈完成签到,获得积分10
刚刚
1秒前
RAY完成签到,获得积分10
1秒前
2秒前
星辰大海应助Zetlynn采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
CCL应助科研通管家采纳,获得40
3秒前
yookia应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
万能图书馆应助ttsong2采纳,获得10
3秒前
3秒前
3秒前
4秒前
sdfdzhang完成签到 ,获得积分0
4秒前
善学以致用应助McbxM采纳,获得10
5秒前
我是老大应助lueluelue采纳,获得10
5秒前
Alvin发布了新的文献求助10
6秒前
7秒前
liwj完成签到,获得积分10
8秒前
12345678发布了新的文献求助10
8秒前
wuming完成签到,获得积分10
9秒前
英姑应助奋斗的紫易采纳,获得10
9秒前
Hello应助认真的冰淇淋采纳,获得10
10秒前
10秒前
11秒前
dingz完成签到,获得积分10
11秒前
啦啦啦发布了新的文献求助10
12秒前
McbxM完成签到,获得积分10
13秒前
14秒前
15秒前
淡然的舞仙完成签到,获得积分10
16秒前
McbxM发布了新的文献求助10
17秒前
18秒前
pcr163应助yar采纳,获得50
19秒前
李健应助果壳茉莉拌沙拉采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719