A multi-fidelity transfer learning strategy based on multi-channel fusion

学习迁移 计算机科学 频道(广播) 忠诚 传输(计算) 融合 人工智能 计算机网络 电信 语言学 哲学 并行计算
作者
Zi-Han Zhang,Qian Ye,Dejin Yang,Na Wang,Guoxiang Meng
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:506: 112952-112952
标识
DOI:10.1016/j.jcp.2024.112952
摘要

Multi-fidelity strategies leverage a large amount of low-fidelity data combined with a smaller set of high-fidelity data, thereby achieving satisfactory results at a reasonable cost. In our research, we introduce an innovative multi-fidelity strategy that integrates the concepts of multi-fidelity data fusion and transfer learning. In the proposed framework, we incorporate auto-encoders and a multi-channel transfer learning strategy, enabling the network model to comprehend the relationship between the low-fidelity and high-fidelity models in both explicit and implicit manners. This approach not only enhances prediction accuracy but also mitigates issues such as overfitting and negative transfer, which may arise in scenarios with sparse samples. Additionally, Bayesian optimization is employed for effective hyperparameter selection. To evaluate and analyze the performance of our proposed method, we present a series of benchmark test cases. Furthermore, we also show the application of the proposed method to engineering problems. Firstly, we consider a parametrized partial differential equation problem, where high-fidelity and low-fidelity data are obtained using exact methods and simplified algorithms, respectively. Subsequently, we extend this strategy to convolutional neural network architectures, specifically addressing a pressure Poisson equation problem. We also explore the effect of the reliability of the low-fidelity data and the number of high-fidelity data on the results. The results show that the proposed method exhibits low requirements in terms of both the reliability of the low-fidelity data and the number of high-fidelity data while maintaining satisfactory accuracy metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xioabu发布了新的文献求助10
2秒前
yunikn完成签到,获得积分20
2秒前
小燕完成签到,获得积分10
3秒前
畅快的枫发布了新的文献求助10
7秒前
7秒前
8秒前
木又权发布了新的文献求助10
8秒前
tutt发布了新的文献求助10
9秒前
Coraline应助budingman采纳,获得20
9秒前
Bellis完成签到 ,获得积分10
9秒前
汉堡包应助Shennnn采纳,获得10
11秒前
meng完成签到,获得积分10
12秒前
岳岳岳完成签到 ,获得积分10
12秒前
在写了发布了新的文献求助10
13秒前
像风一样发布了新的文献求助10
14秒前
14秒前
柯一一应助hvivi6采纳,获得10
15秒前
香蕉觅云应助hvivi6采纳,获得10
15秒前
桐桐应助xioabu采纳,获得10
18秒前
22秒前
Asteria完成签到,获得积分10
24秒前
Cala洛~完成签到 ,获得积分10
24秒前
畅快的枫完成签到,获得积分10
25秒前
25秒前
QQ完成签到,获得积分10
26秒前
三石完成签到 ,获得积分10
26秒前
28秒前
Eunice完成签到,获得积分10
29秒前
wualexandra完成签到,获得积分10
29秒前
徐哈哈发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
Hawaii完成签到,获得积分10
32秒前
彩色的冥茗完成签到,获得积分10
34秒前
丰富的宛亦完成签到,获得积分10
34秒前
钟于发布了新的文献求助10
36秒前
科研通AI5应助可爱的梦松采纳,获得10
36秒前
cij123完成签到,获得积分10
37秒前
机灵烤鸡发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432