A multi-fidelity transfer learning strategy based on multi-channel fusion

学习迁移 计算机科学 频道(广播) 忠诚 传输(计算) 融合 人工智能 计算机网络 电信 语言学 哲学 并行计算
作者
Zi-Han Zhang,Qian Ye,Dejin Yang,Na Wang,Guoxiang Meng
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:506: 112952-112952
标识
DOI:10.1016/j.jcp.2024.112952
摘要

Multi-fidelity strategies leverage a large amount of low-fidelity data combined with a smaller set of high-fidelity data, thereby achieving satisfactory results at a reasonable cost. In our research, we introduce an innovative multi-fidelity strategy that integrates the concepts of multi-fidelity data fusion and transfer learning. In the proposed framework, we incorporate auto-encoders and a multi-channel transfer learning strategy, enabling the network model to comprehend the relationship between the low-fidelity and high-fidelity models in both explicit and implicit manners. This approach not only enhances prediction accuracy but also mitigates issues such as overfitting and negative transfer, which may arise in scenarios with sparse samples. Additionally, Bayesian optimization is employed for effective hyperparameter selection. To evaluate and analyze the performance of our proposed method, we present a series of benchmark test cases. Furthermore, we also show the application of the proposed method to engineering problems. Firstly, we consider a parametrized partial differential equation problem, where high-fidelity and low-fidelity data are obtained using exact methods and simplified algorithms, respectively. Subsequently, we extend this strategy to convolutional neural network architectures, specifically addressing a pressure Poisson equation problem. We also explore the effect of the reliability of the low-fidelity data and the number of high-fidelity data on the results. The results show that the proposed method exhibits low requirements in terms of both the reliability of the low-fidelity data and the number of high-fidelity data while maintaining satisfactory accuracy metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
oceanao应助研友_Z729Mn采纳,获得10
2秒前
HC完成签到,获得积分10
3秒前
马纹完成签到,获得积分10
3秒前
良辰应助Pangki采纳,获得10
4秒前
小杰瑞完成签到,获得积分10
5秒前
7秒前
9秒前
周应关注了科研通微信公众号
11秒前
NHEB发布了新的文献求助10
13秒前
fxh完成签到,获得积分10
14秒前
情怀应助Fox采纳,获得10
14秒前
smallant发布了新的文献求助10
15秒前
大胆的菠萝完成签到 ,获得积分20
17秒前
20秒前
24秒前
25秒前
拉长的战斗机完成签到,获得积分10
27秒前
黄友群完成签到 ,获得积分10
27秒前
香蕉觅云应助多情的映波采纳,获得10
28秒前
29秒前
好好丸发布了新的文献求助10
29秒前
29秒前
Tough完成签到 ,获得积分10
31秒前
可靠的南霜完成签到 ,获得积分20
31秒前
陈大侠发布了新的文献求助10
31秒前
34秒前
ss发布了新的文献求助10
36秒前
nil发布了新的文献求助10
36秒前
JamesPei应助周应采纳,获得10
38秒前
二中所长发布了新的文献求助10
39秒前
科研通AI2S应助nn采纳,获得10
39秒前
39秒前
好好丸完成签到,获得积分10
39秒前
hujin应助二中所长采纳,获得10
43秒前
Fox发布了新的文献求助10
43秒前
sdasd发布了新的文献求助10
45秒前
赘婿应助stephy采纳,获得10
45秒前
ss完成签到,获得积分10
47秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164170
求助须知:如何正确求助?哪些是违规求助? 2814884
关于积分的说明 7906945
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228