已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-fidelity transfer learning strategy based on multi-channel fusion

学习迁移 计算机科学 频道(广播) 忠诚 传输(计算) 融合 人工智能 计算机网络 电信 语言学 哲学 并行计算
作者
Zi-Han Zhang,Qian Ye,Dejin Yang,Na Wang,Guoxiang Meng
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:506: 112952-112952
标识
DOI:10.1016/j.jcp.2024.112952
摘要

Multi-fidelity strategies leverage a large amount of low-fidelity data combined with a smaller set of high-fidelity data, thereby achieving satisfactory results at a reasonable cost. In our research, we introduce an innovative multi-fidelity strategy that integrates the concepts of multi-fidelity data fusion and transfer learning. In the proposed framework, we incorporate auto-encoders and a multi-channel transfer learning strategy, enabling the network model to comprehend the relationship between the low-fidelity and high-fidelity models in both explicit and implicit manners. This approach not only enhances prediction accuracy but also mitigates issues such as overfitting and negative transfer, which may arise in scenarios with sparse samples. Additionally, Bayesian optimization is employed for effective hyperparameter selection. To evaluate and analyze the performance of our proposed method, we present a series of benchmark test cases. Furthermore, we also show the application of the proposed method to engineering problems. Firstly, we consider a parametrized partial differential equation problem, where high-fidelity and low-fidelity data are obtained using exact methods and simplified algorithms, respectively. Subsequently, we extend this strategy to convolutional neural network architectures, specifically addressing a pressure Poisson equation problem. We also explore the effect of the reliability of the low-fidelity data and the number of high-fidelity data on the results. The results show that the proposed method exhibits low requirements in terms of both the reliability of the low-fidelity data and the number of high-fidelity data while maintaining satisfactory accuracy metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的丹雪完成签到 ,获得积分10
1秒前
特特雷珀萨努完成签到 ,获得积分10
6秒前
7秒前
南山发布了新的文献求助10
12秒前
15秒前
hh完成签到 ,获得积分10
15秒前
盛事不朽完成签到 ,获得积分10
16秒前
薄荷小新完成签到 ,获得积分10
16秒前
海鸥别叫了完成签到 ,获得积分10
19秒前
24秒前
靖柔完成签到 ,获得积分10
25秒前
芳心纵火犯完成签到,获得积分10
26秒前
FLY完成签到,获得积分10
28秒前
深情安青应助yuyu采纳,获得10
29秒前
饱满的日记本完成签到,获得积分10
30秒前
Cookiee完成签到 ,获得积分10
32秒前
32秒前
青丝二缕完成签到,获得积分10
33秒前
科研通AI5应助桃桃采纳,获得10
34秒前
小海完成签到,获得积分0
38秒前
38秒前
40秒前
41秒前
儿学化学打断腿完成签到,获得积分10
41秒前
yuyu发布了新的文献求助10
43秒前
46秒前
48秒前
Aloha完成签到,获得积分10
51秒前
桃桃发布了新的文献求助10
55秒前
clown发布了新的文献求助10
55秒前
怡然立轩完成签到 ,获得积分10
56秒前
星辰大海应助yuyu采纳,获得30
57秒前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
桃桃完成签到,获得积分10
1分钟前
tjnksy完成签到,获得积分10
1分钟前
暴风眼完成签到,获得积分10
1分钟前
小宇宙z完成签到,获得积分10
1分钟前
沉梦昂志_hzy完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944474
求助须知:如何正确求助?哪些是违规求助? 4209382
关于积分的说明 13085189
捐赠科研通 3989085
什么是DOI,文献DOI怎么找? 2183984
邀请新用户注册赠送积分活动 1199325
关于科研通互助平台的介绍 1112262