Quantification of follicles in human ovarian tissue using image processing software and trained artificial intelligence

生物 毛囊 卵泡 卵巢癌 内分泌系统 人工智能 卵巢 癌症 计算机科学 内分泌学 激素 遗传学
作者
Gabrielle M. Blevins,Colleen L. Flanagan,Sridula S Kallakuri,Owen M Meyer,Likitha Nimmagadda,James D Hatch,Sydney A Shea,Vasantha Padmanabhan,Ariella Shikanov
出处
期刊:Biology of Reproduction [Oxford University Press]
卷期号:110 (6): 1086-1099 被引量:2
标识
DOI:10.1093/biolre/ioae048
摘要

Abstract Cancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency, loss of fertility, and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue. The success of this approach is largely determined by follicle density in the implanted ovarian tissue, which is analyzed manually from histologic sections and necessitates specialized, time-consuming labor. To address this limitation, we developed a fully automated method to quantify follicle density that does not require additional coding. We first analyzed ovarian tissue from 12 human donors between 16 and 37 years old using semi-automated image processing with manual follicle annotation and then trained artificial intelligence program based on follicle identification and object classification. One operator manually analyzed 102 whole slide images from serial histologic sections. Of those, 77 images were assessed by a second manual operator, followed with an automated method utilizing artificial intelligence. Of the 1181 follicles the control operator counted, the comparison operator counted 1178, and the artificial intelligence counted 927 follicles with 80% of those being correctly identified as follicles. The three-stage artificial intelligence pipeline finished 33% faster than manual annotation. Collectively, this report supports the use of artificial intelligence and automation to select tissue donors and grafts with the greatest follicle density to ensure graft longevity for premature ovarian insufficiency treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
随安发布了新的文献求助10
刚刚
1秒前
1秒前
旷野发布了新的文献求助10
2秒前
JamesHao发布了新的文献求助10
3秒前
3秒前
吾月发布了新的文献求助10
3秒前
JamesPei应助ALUCK采纳,获得10
3秒前
情怀应助liuzhanyu采纳,获得10
4秒前
齐以言完成签到,获得积分10
5秒前
5秒前
核桃发布了新的文献求助10
5秒前
ding应助知己采纳,获得10
5秒前
Ava应助阿丑的小伙伴采纳,获得10
5秒前
小石头发布了新的文献求助10
5秒前
6秒前
1717发布了新的文献求助10
7秒前
柚子皮发布了新的文献求助20
7秒前
拖把粘十完成签到 ,获得积分10
8秒前
北柑完成签到,获得积分20
8秒前
研友_r8YgPn发布了新的文献求助10
9秒前
lzzd031416完成签到,获得积分10
9秒前
Q Eason发布了新的文献求助10
10秒前
布洛芬完成签到,获得积分20
11秒前
lzx发布了新的文献求助10
11秒前
11秒前
JamesHao完成签到,获得积分10
11秒前
11秒前
13秒前
成博应助可爱的凛采纳,获得10
13秒前
wangdao完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
鱼啵啵完成签到,获得积分10
14秒前
14秒前
小河鱼发布了新的文献求助50
14秒前
i黄m完成签到,获得积分20
15秒前
kyo发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868