Quantification of follicles in human ovarian tissue using image processing software and trained artificial intelligence

生物 毛囊 卵泡 卵巢癌 内分泌系统 人工智能 卵巢 癌症 计算机科学 内分泌学 激素 遗传学
作者
Gabrielle M. Blevins,Colleen L. Flanagan,Sridula S Kallakuri,Owen M Meyer,Likitha Nimmagadda,James D Hatch,Sydney A Shea,Vasantha Padmanabhan,Ariella Shikanov
出处
期刊:Biology of Reproduction [Oxford University Press]
卷期号:110 (6): 1086-1099 被引量:2
标识
DOI:10.1093/biolre/ioae048
摘要

Abstract Cancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency, loss of fertility, and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue. The success of this approach is largely determined by follicle density in the implanted ovarian tissue, which is analyzed manually from histologic sections and necessitates specialized, time-consuming labor. To address this limitation, we developed a fully automated method to quantify follicle density that does not require additional coding. We first analyzed ovarian tissue from 12 human donors between 16 and 37 years old using semi-automated image processing with manual follicle annotation and then trained artificial intelligence program based on follicle identification and object classification. One operator manually analyzed 102 whole slide images from serial histologic sections. Of those, 77 images were assessed by a second manual operator, followed with an automated method utilizing artificial intelligence. Of the 1181 follicles the control operator counted, the comparison operator counted 1178, and the artificial intelligence counted 927 follicles with 80% of those being correctly identified as follicles. The three-stage artificial intelligence pipeline finished 33% faster than manual annotation. Collectively, this report supports the use of artificial intelligence and automation to select tissue donors and grafts with the greatest follicle density to ensure graft longevity for premature ovarian insufficiency treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科学家完成签到,获得积分10
刚刚
sctaaa发布了新的文献求助10
刚刚
叶白山完成签到,获得积分10
刚刚
猫猫头完成签到 ,获得积分10
1秒前
苏苏完成签到,获得积分10
1秒前
咖喱发布了新的文献求助10
1秒前
有趣的灵魂完成签到,获得积分10
2秒前
谢飞完成签到,获得积分10
2秒前
2秒前
会撒娇的如天完成签到 ,获得积分10
2秒前
小二郎应助循环采纳,获得10
2秒前
3秒前
3秒前
ruanyh完成签到,获得积分10
3秒前
英俊的铭应助幽默的慕青采纳,获得10
4秒前
尘南浔完成签到 ,获得积分10
4秒前
lixy完成签到,获得积分10
4秒前
shisui完成签到,获得积分10
4秒前
眼睛大樱桃完成签到,获得积分10
4秒前
斯文的斩完成签到,获得积分10
5秒前
怡然的代玉完成签到,获得积分10
5秒前
夜瞳完成签到,获得积分10
5秒前
机灵瑛完成签到,获得积分10
6秒前
qq发布了新的文献求助10
6秒前
深情安青应助糊涂的孤丝采纳,获得20
7秒前
7秒前
彭于晏应助忆枫采纳,获得10
7秒前
科研通AI5应助Carly采纳,获得30
8秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
momo完成签到,获得积分10
8秒前
szmsnail完成签到,获得积分10
9秒前
lwj完成签到,获得积分10
9秒前
自由的信仰完成签到,获得积分10
9秒前
YB完成签到,获得积分10
11秒前
淡定的健柏完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
朴实以松完成签到,获得积分10
13秒前
典雅的静完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856