An Interpretable Explanation Approach for Signal Modulation Classification

调制(音乐) 计算机科学 信号(编程语言) 频率调制 信号处理 语音识别 人工智能 模式识别(心理学) 电子工程 声学 无线电频率 物理 电信 工程类 雷达 程序设计语言
作者
Jing Bai,Yingfei Lian,Yiran Wang,Junjie Ren,Zhu Xiao,Huaji Zhou,Licheng Jiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2024.3381706
摘要

Signal modulation classification (SMC) has attracted extensive attention for its wide application in the military and civil fields. The current direction of combining deep learning technology with wireless communication technology is developing hotly. Deep learning models are riding high in the field of SMC with their highly abstract feature extraction capability. However, most deep learning models are decision-agnostic, limiting their application to critical areas. This paper proposes combining traditional feature-based methods to set appropriate manual features as interpretable representations for different modulation classification tasks. The fitted decision tree model is used as the basis for the decision of the original model on the instance to be interpreted, and the trustworthiness of the original deep learning model is verified by comparing the decision tree model with the prior knowledge of the signal feature-based modulation classification algorithm. We apply the interpretable explanation method under the current leading deep learning model in the field of modulation classification. The interpretation results show that the decision basis of the model under a high signal-to-noise ratio(SNR) is consistent with the expert knowledge in the traditional SMC method. The experiments show that our method is stable and can guarantee local fidelity. The decision tree as an interpretation model is intuitive and consistent with human reasoning intuition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixinyue发布了新的文献求助10
1秒前
kk完成签到,获得积分10
1秒前
可可应助耳朵先生采纳,获得10
2秒前
2秒前
2秒前
番茄酱完成签到 ,获得积分10
2秒前
怕黑的静蕾应助liuxuiaologn采纳,获得10
4秒前
天行马发布了新的文献求助10
4秒前
麦乐迪应助壮观的擎采纳,获得10
5秒前
Ava应助josy采纳,获得10
5秒前
麦乐迪应助壮观的擎采纳,获得10
5秒前
麦乐迪应助壮观的擎采纳,获得10
5秒前
十二应助壮观的擎采纳,获得10
5秒前
yuyan发布了新的文献求助10
6秒前
爆米花应助珂珂采纳,获得10
6秒前
6秒前
7秒前
7秒前
传奇3应助魔芋采纳,获得10
8秒前
pokikiii发布了新的文献求助10
8秒前
8秒前
10秒前
HB发布了新的文献求助10
10秒前
科研鸟发布了新的文献求助10
11秒前
12秒前
小鹏哥完成签到,获得积分10
12秒前
12秒前
13秒前
15秒前
15秒前
pokikiii完成签到,获得积分10
16秒前
hvivi6发布了新的文献求助10
16秒前
完美世界应助xiatl采纳,获得10
16秒前
17秒前
所所应助SCI方便面采纳,获得10
17秒前
17秒前
HB完成签到,获得积分10
18秒前
19秒前
悦耳的扬发布了新的文献求助10
19秒前
科目三应助天行马采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429