An Interpretable Explanation Approach for Signal Modulation Classification

调制(音乐) 计算机科学 信号(编程语言) 频率调制 信号处理 语音识别 人工智能 模式识别(心理学) 电子工程 声学 无线电频率 物理 电信 工程类 雷达 程序设计语言
作者
Jing Bai,Yingfei Lian,Yiran Wang,Junjie Ren,Zhu Xiao,Huaji Zhou,Licheng Jiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2024.3381706
摘要

Signal modulation classification (SMC) has attracted extensive attention for its wide application in the military and civil fields. The current direction of combining deep learning technology with wireless communication technology is developing hotly. Deep learning models are riding high in the field of SMC with their highly abstract feature extraction capability. However, most deep learning models are decision-agnostic, limiting their application to critical areas. This paper proposes combining traditional feature-based methods to set appropriate manual features as interpretable representations for different modulation classification tasks. The fitted decision tree model is used as the basis for the decision of the original model on the instance to be interpreted, and the trustworthiness of the original deep learning model is verified by comparing the decision tree model with the prior knowledge of the signal feature-based modulation classification algorithm. We apply the interpretable explanation method under the current leading deep learning model in the field of modulation classification. The interpretation results show that the decision basis of the model under a high signal-to-noise ratio(SNR) is consistent with the expert knowledge in the traditional SMC method. The experiments show that our method is stable and can guarantee local fidelity. The decision tree as an interpretation model is intuitive and consistent with human reasoning intuition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助huazi采纳,获得10
1秒前
一部船完成签到,获得积分10
1秒前
zkwww完成签到 ,获得积分10
2秒前
Lucy发布了新的文献求助10
2秒前
lv完成签到,获得积分10
3秒前
orixero应助良药采纳,获得10
4秒前
FashionBoy应助优秀采纳,获得10
4秒前
4秒前
4秒前
5秒前
炙热的如柏完成签到,获得积分20
5秒前
6秒前
zzyfsh完成签到,获得积分10
6秒前
慕迎蕾发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
小禾发布了新的文献求助10
10秒前
10秒前
研友_ngqjz8完成签到,获得积分10
10秒前
CodeCraft应助孟长歌采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助哔噗哔噗采纳,获得10
11秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
健忘天问发布了新的文献求助10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
13秒前
zz发布了新的文献求助10
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Diamonds: Properties, Synthesis and Applications 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3098628
求助须知:如何正确求助?哪些是违规求助? 2750398
关于积分的说明 7608117
捐赠科研通 2402221
什么是DOI,文献DOI怎么找? 1274557
科研通“疑难数据库(出版商)”最低求助积分说明 616124
版权声明 599033