Adam golden search optimization enabled DCNN for classification of breast cancer using histopathological image

乳腺癌 癌症 图像(数学) 人工智能 模式识别(心理学) 计算机科学 医学 内科学
作者
N. Suganthi,Srividya Kotagiri,D.R. Thirupurasundari,S. Vimala
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106239-106239
标识
DOI:10.1016/j.bspc.2024.106239
摘要

Breast Cancer (BC) is a killing disorder, every year it kills millions of human beings. Early diagnosis is the only way to mitigate the mortality rate. Among all kinds of screening methods, medical imaging is an essential method for screening BC. Existing medical imaging alters the tissue structure and cell morphology. To overcome these limitations, histopathology image is used because it can support the decision of pathologists about the closeness or the non-appearance of a disease, as well as it can help in infection development estimation. Hence, this research develops an efficient method for BC classification using the proposed Adam Golden Search Optimization-based Deep Convolutional Neural Network (AGSO-DCNN). Initially, Gaussian filter-enabled pre-processing is utilized for mitigating the noises composed in the input images. Afterwards, k-means clustering is used to feed the input images into the segmentation phase to reduce the complexity of the image. Then, to extract features like shape features, statistical features, Local Vector Patterns (LVP), and Pyramid Histogram of Oriented Gradients (PHOG) feature extraction is performed. Thereafter, the obtained features are forwarded to the multi-grade BC classification stage, where DCNN is employed for classifying the image into six categories, such as apoptosis, tubule, mitosis, non-tubule, tumour nuclei, and non-tumor nuclei. DCNN is trained by the formulated AGSO mechanism, which is obtained by incorporating the Adam Optimizer and Golden Search Optimization (GSO) algorithm. Moreover, the AGSO-based DCNN technique achieved better accuracy, TPR and TNR with the values of 97.90%, 98.00%, and 98.30%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助肥肥菲采纳,获得10
刚刚
hollow完成签到,获得积分20
刚刚
哈吉米发布了新的文献求助10
刚刚
Cecilia完成签到 ,获得积分10
1秒前
科目三应助池鱼采纳,获得30
1秒前
1秒前
小酒窝周周完成签到 ,获得积分10
2秒前
现实的笑槐完成签到,获得积分10
2秒前
Elf完成签到,获得积分10
2秒前
柯善若发布了新的文献求助10
2秒前
Liu_cx完成签到,获得积分10
2秒前
丁昊天完成签到,获得积分10
3秒前
LIU发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
方塘完成签到,获得积分10
5秒前
6秒前
curtain完成签到,获得积分10
6秒前
丘比特应助快乐篮球采纳,获得10
6秒前
7秒前
hzl发布了新的文献求助10
8秒前
柯善若完成签到,获得积分10
8秒前
张巨锋发布了新的文献求助10
8秒前
8秒前
孔晓龙完成签到,获得积分20
9秒前
Archer发布了新的文献求助10
9秒前
风趣雪冥发布了新的文献求助10
9秒前
9秒前
10秒前
lin发布了新的文献求助30
10秒前
传奇3应助日暮倚修竹采纳,获得10
10秒前
zhangzhima完成签到,获得积分10
10秒前
GLEAM发布了新的文献求助10
10秒前
10秒前
合适的晓丝关注了科研通微信公众号
11秒前
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233