Adam golden search optimization enabled DCNN for classification of breast cancer using histopathological image

乳腺癌 癌症 图像(数学) 人工智能 模式识别(心理学) 计算机科学 医学 内科学
作者
N. Suganthi,Srividya Kotagiri,D.R. Thirupurasundari,S. Vimala
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106239-106239
标识
DOI:10.1016/j.bspc.2024.106239
摘要

Breast Cancer (BC) is a killing disorder, every year it kills millions of human beings. Early diagnosis is the only way to mitigate the mortality rate. Among all kinds of screening methods, medical imaging is an essential method for screening BC. Existing medical imaging alters the tissue structure and cell morphology. To overcome these limitations, histopathology image is used because it can support the decision of pathologists about the closeness or the non-appearance of a disease, as well as it can help in infection development estimation. Hence, this research develops an efficient method for BC classification using the proposed Adam Golden Search Optimization-based Deep Convolutional Neural Network (AGSO-DCNN). Initially, Gaussian filter-enabled pre-processing is utilized for mitigating the noises composed in the input images. Afterwards, k-means clustering is used to feed the input images into the segmentation phase to reduce the complexity of the image. Then, to extract features like shape features, statistical features, Local Vector Patterns (LVP), and Pyramid Histogram of Oriented Gradients (PHOG) feature extraction is performed. Thereafter, the obtained features are forwarded to the multi-grade BC classification stage, where DCNN is employed for classifying the image into six categories, such as apoptosis, tubule, mitosis, non-tubule, tumour nuclei, and non-tumor nuclei. DCNN is trained by the formulated AGSO mechanism, which is obtained by incorporating the Adam Optimizer and Golden Search Optimization (GSO) algorithm. Moreover, the AGSO-based DCNN technique achieved better accuracy, TPR and TNR with the values of 97.90%, 98.00%, and 98.30%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助梨理栗采纳,获得10
刚刚
苹果小蕾发布了新的文献求助10
1秒前
慕青应助包容的以彤采纳,获得10
2秒前
郑志钢发布了新的文献求助10
3秒前
4秒前
Surpass完成签到,获得积分10
4秒前
5秒前
5秒前
xiaoqin完成签到,获得积分10
5秒前
6秒前
6秒前
popooo完成签到,获得积分10
6秒前
婕婕子完成签到,获得积分10
6秒前
6秒前
7秒前
滴滴答答完成签到 ,获得积分10
7秒前
7秒前
alaxin发布了新的文献求助10
7秒前
8秒前
李子发布了新的文献求助10
9秒前
似月白完成签到,获得积分20
9秒前
apollo2002发布了新的文献求助10
10秒前
琉璃岁月发布了新的文献求助10
10秒前
Sadgenius发布了新的文献求助10
10秒前
10秒前
zzt发布了新的文献求助10
11秒前
zz发布了新的文献求助10
12秒前
似月白发布了新的文献求助10
12秒前
cxy发布了新的文献求助10
13秒前
LaTeXer应助美好斓采纳,获得30
13秒前
14秒前
14秒前
顾矜应助鹤九采纳,获得10
15秒前
16秒前
神仙师姐应助巫马荧采纳,获得10
16秒前
Thea完成签到 ,获得积分10
17秒前
17秒前
香蕉觅云应助发嗲的戎采纳,获得10
17秒前
琉璃岁月完成签到,获得积分10
18秒前
小二郎应助apollo2002采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474