ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries – Data and Models

计算机科学 比例(比率) 人工智能 机器学习 计算生物学 生物 地理 地图学
作者
Kyle Swanson,Parker Walther,Jeremy Leitz,Souhrid Mukherjee,Joseph C. Wu,Rabindra V. Shivnaraine,James Zou
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.10372418
摘要

This repository contains data and models used in the following paper. Swanson, K., Walther, P., Leitz, J., Mukherjee, S., Wu, J. C., Shivnaraine, R. V., & Zou, J. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries. In review. The data and models are meant to be used with the ADMET-AI code, which runs the ADMET-AI web server at admet.ai.greenstonebio.com. The data.zip file has the following structure. data drugbank: Contains files with drugs from the DrugBank that have received regulatory approval. drugbank_approved.csv contains the full set of approved drugs along with ADMET-AI predictions, while the other files contain subsets of these molecules used for testing the speed of ADMET prediction tools. tdc_admet_all: Contains the data (.csv files) and RDKit features (.npz files) for all 41 single-task ADMET datasets from the Therapeutics Data Commons (TDC). tdc_admet_multitask: Contains the data (.csv files) and RDKit features (.npz files) for the two multi-task datasets (one regression and one classification) constructed by combining the tdc_admet_all datasets. tdc_admet_all.csv: A CSV file containing all 41 ADMET datasets from tdc_admet_all. This can be used to easily look up all ADMET properties for a given molecule in the TDC. tdc_admet_group: Contains the data (.csv files) and RDKit features (.npz files) for the 22 TDC ADMET Benchmark Group datasets with five splits per dataset. tdc_admet_group_raw: Contains the raw data (.csv files) used to construct the five splits per dataset in tdc_admet_group. The models.zip file has the following structure. Note that the ADMET-AI website and Python package use the multi-task Chemprop-RDKit models below. models tdc_admet_all: Contains Chemprop and Chemprop-RDKit models trained on all 41 single-task TDC ADMET datasets. tdc_admet_all_multitask: Contains Chemprop and Chemprop-RDKit models trained on the two multi-task TDC ADMET datasets (one regression and one classification). tdc_admet_group: Contains Chemprop and Chemprop-RDKit models trained on the 22 TDC ADMET Benchmark Group datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
pophoo发布了新的文献求助10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
实验好难应助科研通管家采纳,获得10
1秒前
追寻南晴应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
yaoyao发布了新的文献求助10
2秒前
无心的星月完成签到,获得积分20
2秒前
负责灵萱完成签到 ,获得积分10
3秒前
赘婿应助冬瓜采纳,获得10
4秒前
冰美式完成签到,获得积分10
4秒前
晨风韵雨发布了新的文献求助10
5秒前
5秒前
小阿飞完成签到,获得积分10
6秒前
6秒前
小王博士完成签到,获得积分20
8秒前
9秒前
希望天下0贩的0应助yaoyao采纳,获得10
9秒前
成就的山水完成签到,获得积分10
10秒前
科研通AI5应助鸭鸭采纳,获得10
12秒前
liang发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835