同步
同步(交流)
Neumann边界条件
边界(拓扑)
Dirichlet边界条件
数学
边值问题
控制理论(社会学)
反应扩散系统
常量(计算机编程)
领域(数学分析)
Dirichlet分布
李雅普诺夫函数
应用数学
数学分析
计算机科学
拓扑(电路)
控制(管理)
非线性系统
物理
组合数学
人工智能
量子力学
程序设计语言
作者
Yishu Wang,Jianquan Lu,Tingwen Huang,Jinde Cao,Jie Zhong
出处
期刊:Chaos
[American Institute of Physics]
日期:2024-04-01
卷期号:34 (4)
被引量:1
摘要
This paper examines fixed-time synchronization (FxTS) for two-dimensional coupled reaction-diffusion complex networks (CRDCNs) with impulses and delay. Utilizing the Lyapunov method, a FxTS criterion is established for impulsive delayed CRDCNs. Herein, impulses encompass both synchronizing and desynchronizing variants. Subsequently, by employing a Lyapunov-Krasovskii functional, two FxTS boundary controllers are formulated for CRDCNs with Neumann and mixed boundary condition, respectively. It is observed that vanishing Dirichlet boundary contributes to the synchronization of the CRDCNs. Furthermore, this study calculates the optimal constant for the Poincaré inequality in the square domain, which is instrumental in analyzing FxTS conditions for boundary controllers. Conclusive numerical examples underscore the efficacy of the proposed theoretical findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI