Learning robust autonomous navigation and locomotion for wheeled-legged robots

机器人 计算机科学 机器人运动 移动机器人 步行机器人 人工智能 人机交互 计算机视觉 机器人控制
作者
Joonho Lee,Marko Bjelonic,Alexander Reske,Lorenz Wellhausen,Takahiro Miki,Marco Hutter
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:9 (89) 被引量:3
标识
DOI:10.1126/scirobotics.adi9641
摘要

Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助歪哔巴布采纳,获得10
3秒前
标致冬日完成签到,获得积分10
6秒前
7秒前
XS123发布了新的文献求助10
7秒前
叶知秋完成签到,获得积分10
7秒前
桐桐应助雯雯采纳,获得10
8秒前
完美世界应助活泼学生采纳,获得10
10秒前
luchen发布了新的文献求助10
11秒前
11秒前
sam完成签到,获得积分20
11秒前
饱满翠绿完成签到,获得积分10
12秒前
sdysdbd发布了新的文献求助30
12秒前
13秒前
纪复天完成签到,获得积分10
14秒前
歪哔巴布发布了新的文献求助10
18秒前
adam完成签到,获得积分10
18秒前
今后应助科研通管家采纳,获得10
19秒前
咖啡豆应助科研通管家采纳,获得10
19秒前
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
明理小土豆完成签到,获得积分10
20秒前
20秒前
20秒前
22秒前
24秒前
24秒前
Frisk12sfs发布了新的文献求助10
24秒前
潇洒哥完成签到,获得积分10
24秒前
Yangpc发布了新的文献求助10
25秒前
友好醉波完成签到 ,获得积分10
27秒前
zhangscience发布了新的文献求助10
27秒前
32秒前
FashionBoy应助zhangscience采纳,获得10
33秒前
英姑应助Frisk12sfs采纳,获得10
33秒前
YY发布了新的文献求助10
34秒前
centlay发布了新的文献求助30
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194