机器人
计算机科学
机器人运动
移动机器人
步行机器人
人工智能
人机交互
计算机视觉
机器人控制
作者
Joonho Lee,Marko Bjelonic,Alexander Reske,Lorenz Wellhausen,Takahiro Miki,Marco Hutter
出处
期刊:Science robotics
[American Association for the Advancement of Science (AAAS)]
日期:2024-04-24
卷期号:9 (89)
被引量:3
标识
DOI:10.1126/scirobotics.adi9641
摘要
Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI