Learning robust autonomous navigation and locomotion for wheeled-legged robots

适应性 地形 机器人 稳健性(进化) 计算机科学 运动规划 导航系统 控制器(灌溉) 强化学习 移动机器人 人工智能 模拟 控制工程 工程类 生态学 生物化学 化学 生物 农学 基因
作者
Joonho Lee,Marko Bjelonic,Alexander Reske,Lorenz Wellhausen,Takahiro Miki,Marco Hutter
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:9 (89) 被引量:12
标识
DOI:10.1126/scirobotics.adi9641
摘要

Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡高爱自由完成签到,获得积分10
1秒前
2秒前
acetdw发布了新的文献求助10
2秒前
3秒前
小蘑菇应助无所谓的啦采纳,获得10
3秒前
桐桐应助无所谓的啦采纳,获得10
3秒前
彭于晏应助无所谓的啦采纳,获得10
3秒前
NexusExplorer应助无所谓的啦采纳,获得10
3秒前
科研通AI2S应助无所谓的啦采纳,获得10
3秒前
科目三应助无所谓的啦采纳,获得10
3秒前
思源应助无所谓的啦采纳,获得10
3秒前
Lucas应助无所谓的啦采纳,获得10
3秒前
小二郎应助无所谓的啦采纳,获得10
3秒前
1234发布了新的文献求助10
5秒前
哆啦梦发布了新的文献求助10
5秒前
7秒前
ding应助zzz采纳,获得10
7秒前
小猴同学完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
橙子完成签到,获得积分10
11秒前
hyh发布了新的文献求助10
11秒前
酷波er应助CHB只争朝夕采纳,获得10
12秒前
13秒前
13秒前
14秒前
saisyo发布了新的文献求助10
15秒前
hyh完成签到,获得积分10
17秒前
朴实云应完成签到,获得积分10
19秒前
Akim应助稳重的悟空采纳,获得10
20秒前
21秒前
SYLH应助英勇的初柔采纳,获得10
21秒前
24秒前
今后应助好运连连采纳,获得10
24秒前
科研通AI5应助rubyyoyo采纳,获得10
27秒前
27秒前
28秒前
Erick完成签到,获得积分0
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516