AutoDev: Automated AI-Driven Development

计算机科学
作者
Michele Tufano,Anisha Agarwal,Jinu Jang,Roshanak Zilouchian Moghaddam,Neel Sundaresan
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2403.08299
摘要

The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
2秒前
月不笑发布了新的文献求助10
2秒前
情怀应助瑞思摆采纳,获得10
3秒前
Xiaoshen发布了新的文献求助10
6秒前
黎明发布了新的文献求助10
10秒前
11秒前
情怀应助月不笑采纳,获得10
11秒前
星辰大海应助小公举采纳,获得10
12秒前
CodeCraft应助秋秋采纳,获得10
13秒前
柒柒完成签到,获得积分10
13秒前
烂漫映秋完成签到,获得积分10
14秒前
14秒前
桐桐应助颠倒梦想采纳,获得10
14秒前
一只小锦李完成签到,获得积分20
15秒前
思源应助语上采纳,获得10
17秒前
安塘完成签到,获得积分20
18秒前
18秒前
脑洞疼应助volvoamg采纳,获得10
18秒前
18秒前
19秒前
阿白完成签到,获得积分10
19秒前
thousandlong发布了新的文献求助20
20秒前
21秒前
21秒前
汉堡包应助yangxt-iga采纳,获得10
21秒前
22秒前
天天快乐应助阿达采纳,获得10
22秒前
月不笑发布了新的文献求助10
23秒前
潜水的土拨鼠完成签到,获得积分10
23秒前
where发布了新的文献求助10
24秒前
无花果应助血管垢采纳,获得10
24秒前
Octozhang完成签到,获得积分10
25秒前
26秒前
英姑应助杨迅采纳,获得10
27秒前
汉堡包应助ccbns827采纳,获得10
27秒前
27秒前
27秒前
852应助疏影采纳,获得30
27秒前
29秒前
赘婿应助碧蓝的紫翠采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256