DEEP-CARDIO: Recommendation System for Cardiovascular Disease Prediction Using IoT Network

计算机科学 物联网 疾病 人工智能 数据挖掘 计算机安全 医学 内科学
作者
A. Yashudas,Dinesh Gupta,G. C. Prashant,Amit Dua,Dokhyl AlQahtani,A. Siva Krishna Reddy
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 14539-14547 被引量:9
标识
DOI:10.1109/jsen.2024.3373429
摘要

The Internet of Things (IoTs)-based remote healthcare applications provide fast and preventative medical services to the patients at risk. However, predicting heart disease is a complex task, and diagnosis results are rarely accurate. To address this issue, a novel Recommendation System for Cardiovascular Disease (CVD) Prediction Using IoT Network (DEEP-CARDIO) has been proposed for providing prior diagnosis, treatment, and dietary recommendations for cardiac diseases. Initially, the physiological data are collected from the patients remotely by using the four biosensors, such as ECG sensor, pressure sensor, pulse sensor, and glucose sensor. An Arduino controller receives the collected data from the IoT sensors to predict and diagnose the disease. A CVD prediction model is implemented by using bidirectional-gated recurrent unit (BiGRU) attention model, which diagnoses the CVD and classifies into five available cardiovascular classes. The recommendation system provides physical and dietary recommendations to cardiac patients based on the classified data, via user mobile application. The performance of the DEEP-CARDIO is validated by Cloud Simulator (CloudSim) using the real-time Framingham's and Statlog heart disease dataset. The proposed DEEP CARDIO method achieves an overall accuracy of 99.90%, whereas the MABC-SVM, HCBDA, and MLbPM methods achieve 86.91%, 88.65%, and 93.63%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
4秒前
6秒前
lsx发布了新的文献求助10
6秒前
dili发布了新的文献求助20
6秒前
6秒前
Akim应助富贵李采纳,获得10
6秒前
慕青应助bobo采纳,获得10
7秒前
鬼豆完成签到,获得积分10
7秒前
7秒前
老姚发布了新的文献求助10
8秒前
8秒前
我要向阳而生完成签到 ,获得积分10
8秒前
111完成签到,获得积分10
8秒前
9秒前
852应助乐观笑南采纳,获得10
9秒前
10秒前
10秒前
10秒前
浮游应助Percy采纳,获得10
10秒前
sswbzh应助xxsw采纳,获得200
11秒前
11秒前
lls发布了新的文献求助10
11秒前
wf0806发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
上官若男应助sqq采纳,获得10
13秒前
wangxw完成签到,获得积分10
13秒前
Li完成签到,获得积分20
13秒前
14秒前
15秒前
小小K发布了新的文献求助10
15秒前
动听葵阴发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
活在当下发布了新的文献求助10
17秒前
mingtian发布了新的文献求助10
17秒前
青山有别完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145