DEEP-CARDIO: Recommendation System for Cardiovascular Disease Prediction Using IoT Network

计算机科学 物联网 疾病 人工智能 数据挖掘 计算机安全 医学 内科学
作者
A. Yashudas,Dinesh Gupta,G. C. Prashant,Amit Dua,Dokhyl AlQahtani,A. Siva Krishna Reddy
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 14539-14547 被引量:9
标识
DOI:10.1109/jsen.2024.3373429
摘要

The Internet of Things (IoTs)-based remote healthcare applications provide fast and preventative medical services to the patients at risk. However, predicting heart disease is a complex task, and diagnosis results are rarely accurate. To address this issue, a novel Recommendation System for Cardiovascular Disease (CVD) Prediction Using IoT Network (DEEP-CARDIO) has been proposed for providing prior diagnosis, treatment, and dietary recommendations for cardiac diseases. Initially, the physiological data are collected from the patients remotely by using the four biosensors, such as ECG sensor, pressure sensor, pulse sensor, and glucose sensor. An Arduino controller receives the collected data from the IoT sensors to predict and diagnose the disease. A CVD prediction model is implemented by using bidirectional-gated recurrent unit (BiGRU) attention model, which diagnoses the CVD and classifies into five available cardiovascular classes. The recommendation system provides physical and dietary recommendations to cardiac patients based on the classified data, via user mobile application. The performance of the DEEP-CARDIO is validated by Cloud Simulator (CloudSim) using the real-time Framingham's and Statlog heart disease dataset. The proposed DEEP CARDIO method achieves an overall accuracy of 99.90%, whereas the MABC-SVM, HCBDA, and MLbPM methods achieve 86.91%, 88.65%, and 93.63%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CassieBotelho应助奋斗的紫易采纳,获得30
1秒前
1秒前
1秒前
英姑应助asri1234采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
zjy发布了新的文献求助10
4秒前
accept发布了新的文献求助10
4秒前
科研通AI6.1应助az采纳,获得10
5秒前
5秒前
5秒前
5秒前
Shinchan完成签到,获得积分10
6秒前
范拽拽给范拽拽的求助进行了留言
7秒前
niNe3YUE应助明理歌曲采纳,获得10
7秒前
8秒前
9秒前
传奇3应助ciwei采纳,获得10
10秒前
10秒前
Zoye发布了新的文献求助10
12秒前
大方明杰发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
小小青完成签到,获得积分10
15秒前
15秒前
敏感的鸿煊完成签到,获得积分10
16秒前
前进的小宅熊完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
YangSY发布了新的文献求助10
17秒前
莲莲发布了新的文献求助10
18秒前
CodeCraft应助搞怪的元槐采纳,获得30
19秒前
背后中心发布了新的文献求助10
19秒前
19秒前
asri1234发布了新的文献求助30
20秒前
清水胖子发布了新的文献求助30
20秒前
Lucas应助clueless采纳,获得10
21秒前
香菜发布了新的文献求助10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488