清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lower Extremity Growth according to AI Automated Femorotibial Length Measurement on Slot-Scanning Radiographs in Pediatric Patients

医学 射线照相术 口腔正畸科 放射科 核医学 解剖
作者
John R. Zech,Laura Santos,Steven J. Staffa,David Zurakowski,Katherine A. Rosenwasser,Andy Tsai,Diego Jaramillo,Ariane R. Panzer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1)
标识
DOI:10.1148/radiol.231055
摘要

Background Commonly used pediatric lower extremity growth standards are based on small, dated data sets. Artificial intelligence (AI) enables creation of updated growth standards. Purpose To train an AI model using standing slot-scanning radiographs in a racially diverse data set of pediatric patients to measure lower extremity length and to compare expected growth curves derived using AI measurements to those of the conventional Anderson-Green method. Materials and Methods This retrospective study included pediatric patients aged 0-21 years who underwent at least two slot-scanning radiographs in routine clinical care between August 2015 and February 2022. A Mask Region-based Convolutional Neural Network was trained to segment the femur and tibia on radiographs and measure total leg, femoral, and tibial length; accuracy was assessed with mean absolute error. AI measurements were used to create quantile polynomial regression femoral and tibial growth curves, which were compared with the growth curves of the Anderson-Green method for coverage based on the central 90% of the estimated growth distribution. Results In total, 1874 examinations in 523 patients (mean age, 12.7 years ± 2.8 [SD]; 349 female patients) were included; 40% of patients self-identified as White and not Hispanic or Latino, and the remaining 60% self-identified as belonging to a different racial or ethnic group. The AI measurement training, validation, and internal test sets included 114, 25, and 64 examinations, respectively. The mean absolute errors of AI measurements of the femur, tibia, and lower extremity in the test data set were 0.25, 0.27, and 0.33 cm, respectively. All 1874 examinations were used to generate growth curves. AI growth curves more accurately represented lower extremity growth in an external test set (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的初南完成签到 ,获得积分10
13秒前
席康完成签到 ,获得积分10
58秒前
爆米花应助科研通管家采纳,获得10
59秒前
wy发布了新的文献求助10
1分钟前
狮子座完成签到 ,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
CipherSage应助wy采纳,获得10
1分钟前
高海龙完成签到 ,获得积分10
2分钟前
JamesPei应助枯藤老柳树采纳,获得10
2分钟前
古炮完成签到 ,获得积分10
2分钟前
田田完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
凡人丿完成签到,获得积分10
3分钟前
一分发布了新的文献求助50
3分钟前
席江海完成签到,获得积分10
4分钟前
房天川完成签到 ,获得积分10
4分钟前
wangye完成签到 ,获得积分10
4分钟前
5分钟前
Amadeus发布了新的文献求助10
5分钟前
Amadeus完成签到,获得积分10
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
6分钟前
ww完成签到,获得积分10
6分钟前
波里舞完成签到 ,获得积分10
7分钟前
7分钟前
郑先生完成签到 ,获得积分10
7分钟前
科研通AI2S应助lilili采纳,获得10
7分钟前
刘刘完成签到 ,获得积分10
7分钟前
lilili发布了新的文献求助10
8分钟前
8分钟前
今天又来搬砖啦完成签到,获得积分10
10分钟前
川藏客完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
蔡俊辉发布了新的文献求助10
10分钟前
11分钟前
Eri_SCI完成签到 ,获得积分10
11分钟前
11分钟前
8R60d8应助付怀松采纳,获得10
11分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807147
捐赠科研通 2449971
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350