Modern In Vitro Techniques for Modeling Hearing Loss

内耳 诱导多能干细胞 神经科学 螺旋神经节 类有机物 听力损失 感音神经性聋 生物 医学 胚胎干细胞 听力学 生物化学 基因
作者
Jamie J. Shah,Couger A. Jimenez-Jaramillo,Zane R. Lybrand,Tony T. Yuan,Isaac D. Erbele
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (5): 425-425
标识
DOI:10.3390/bioengineering11050425
摘要

Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear’s architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈杰完成签到,获得积分10
1秒前
111发布了新的文献求助50
2秒前
花城完成签到,获得积分10
2秒前
最棒哒完成签到 ,获得积分10
2秒前
搜集达人应助sci采纳,获得10
3秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
4秒前
hh0发布了新的文献求助10
6秒前
7秒前
腾飞完成签到 ,获得积分10
8秒前
不爱喝纯牛奶完成签到 ,获得积分20
8秒前
科研通AI2S应助SPQR采纳,获得10
9秒前
10秒前
柠檬味电子对儿完成签到,获得积分10
11秒前
夜泊完成签到,获得积分10
11秒前
VDC应助钧钧钧采纳,获得30
11秒前
13秒前
傲娇诗发布了新的文献求助10
13秒前
要去西农发布了新的文献求助10
17秒前
Ava应助zzzhujp采纳,获得10
18秒前
18秒前
魔王发布了新的文献求助10
18秒前
18秒前
桐桐应助洛洛采纳,获得10
20秒前
far_away完成签到 ,获得积分10
21秒前
21秒前
mineave完成签到 ,获得积分10
21秒前
尊敬的怀绿完成签到,获得积分10
23秒前
乐天完成签到,获得积分10
23秒前
李爱国应助科研疯狗采纳,获得10
24秒前
24秒前
汲汲而生发布了新的文献求助10
24秒前
finejade完成签到 ,获得积分10
24秒前
yolanda发布了新的文献求助10
24秒前
整齐百褶裙完成签到 ,获得积分10
25秒前
张亦芊如发布了新的文献求助10
26秒前
谦让涵菡完成签到 ,获得积分10
27秒前
打打应助要去西农采纳,获得10
27秒前
胖达完成签到,获得积分10
28秒前
feijelly完成签到,获得积分10
28秒前
上官若男应助yolanda采纳,获得30
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242080
求助须知:如何正确求助?哪些是违规求助? 2886476
关于积分的说明 8243436
捐赠科研通 2555030
什么是DOI,文献DOI怎么找? 1383219
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417