亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unveiling the interaction mechanisms of cold atmospheric plasma and amino acids by machine learning

氨基酸 活性氧 氧化磷酸化 氧化损伤 化学 大气压等离子体 生物物理学 生物系统 分子动力学 纳米技术 抗氧化剂 材料科学 生物化学 等离子体 计算化学 物理 生物 量子力学
作者
Zhao‐Nan Chai,Xucheng Wang,Maksudbek Yusupov,Yuantao Zhang
出处
期刊:Plasma Processes and Polymers [Wiley]
卷期号:21 (7) 被引量:2
标识
DOI:10.1002/ppap.202300230
摘要

Abstract Plasma medicine has attracted tremendous interest in a variety of medical conditions, ranging from wound healing to antimicrobial applications, even in cancer treatment, through the interactions of cold atmospheric plasma (CAP) and various biological tissues directly or indirectly. The underlying mechanisms of CAP treatment are still poorly understood although the oxidative effects of CAP with amino acids, peptides, and proteins have been explored experimentally. In this study, machine learning (ML) technology is introduced to efficiently unveil the interaction mechanisms of amino acids and reactive oxygen species (ROS) in seconds based on the data obtained from the reactive molecular dynamics (MD) simulations, which are performed to probe the interaction of five types of amino acids with various ROS on the timescale of hundreds of picoseconds but with the huge computational load of several days. The oxidative reactions typically start with H‐abstraction, and the details of the breaking and formation of chemical bonds are revealed; the modification types, such as nitrosylation, hydroxylation, and carbonylation, can be observed. The dose effects of ROS are also investigated by varying the number of ROS in the simulation box, indicating agreement with the experimental observation. To overcome the limits of timescales and the size of molecular systems in reactive MD simulations, a deep neural network (DNN) with five hidden layers is constructed according to the reaction data and employed to predict the type of oxidative modification and the probability of occurrence only in seconds as the dose of ROS varies. The well‐trained DNN can effectively and accurately predict the oxidative processes and productions, which greatly improves the computational efficiency by almost ten orders of magnitude compared with the reactive MD simulation. This study shows the great potential of ML technology to efficiently unveil the underpinning mechanisms in plasma medicine based on the data from reactive MD simulations or experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意花卷完成签到 ,获得积分10
11秒前
科目三应助落后的怀柔采纳,获得10
27秒前
NJ完成签到,获得积分10
28秒前
29秒前
zmr发布了新的文献求助10
33秒前
吹皱一湖春水完成签到 ,获得积分10
33秒前
NJ发布了新的文献求助10
41秒前
甜美幻露发布了新的文献求助30
59秒前
Hello应助万嘉俊采纳,获得10
1分钟前
1分钟前
万嘉俊发布了新的文献求助10
1分钟前
科研通AI2S应助picapica668采纳,获得10
1分钟前
1分钟前
1分钟前
小吉利发布了新的文献求助10
1分钟前
Mottri发布了新的文献求助10
1分钟前
Nini1203发布了新的文献求助10
1分钟前
山止川行完成签到 ,获得积分10
1分钟前
红黄蓝完成签到 ,获得积分10
1分钟前
2分钟前
Mottri发布了新的文献求助10
2分钟前
2分钟前
小吉利完成签到,获得积分10
2分钟前
嗯哼应助科研通管家采纳,获得10
2分钟前
Nini1203完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
长情招牌完成签到 ,获得积分10
2分钟前
Kevin Li发布了新的文献求助10
2分钟前
大宝啊完成签到,获得积分20
3分钟前
大宝啊发布了新的文献求助10
3分钟前
吴鸿鑫完成签到 ,获得积分10
3分钟前
研友_LmbRgn完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
成就丸子发布了新的文献求助10
4分钟前
李崋壹完成签到 ,获得积分10
5分钟前
无花果应助JayZZero采纳,获得10
5分钟前
5分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244693
求助须知:如何正确求助?哪些是违规求助? 2888396
关于积分的说明 8252771
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385409
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626247