A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques

干涉合成孔径雷达 山崩 流离失所(心理学) 算法 地质学 系列(地层学) 人工智能 机器学习 时间序列 计算机科学 岩土工程 合成孔径雷达 心理学 心理治疗师 古生物学
作者
Chao Zhou,Ying Cao,Lulu Gan,Yue Wang,Mahdi Motagh,Sigrid Roessner,Xie Hu,Kunlong Yin
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:334: 107497-107497 被引量:35
标识
DOI:10.1016/j.enggeo.2024.107497
摘要

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1 A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HJJHJH发布了新的文献求助50
1秒前
1秒前
芒芒发布了新的文献求助30
2秒前
3秒前
3秒前
NYM完成签到 ,获得积分10
4秒前
5秒前
6秒前
7秒前
开放惜寒发布了新的文献求助10
7秒前
Xieyusen发布了新的文献求助10
8秒前
8秒前
sciiiiii发布了新的文献求助10
10秒前
11秒前
12秒前
无语的y天完成签到 ,获得积分10
14秒前
15秒前
16秒前
李小二完成签到,获得积分10
18秒前
iNk应助陈媛采纳,获得10
18秒前
认真的烧鹅完成签到,获得积分20
18秒前
HoHo完成签到 ,获得积分10
19秒前
Alice完成签到,获得积分10
19秒前
佳啊发布了新的文献求助10
19秒前
21秒前
Oliver完成签到 ,获得积分10
21秒前
xiaogao要读博完成签到,获得积分10
22秒前
Hello应助念姬采纳,获得10
24秒前
科研圣体发布了新的文献求助10
27秒前
27秒前
28秒前
所所应助细心的恋风采纳,获得10
29秒前
JamesPei应助姽稚采纳,获得10
30秒前
Xieyusen发布了新的文献求助10
32秒前
浮生完成签到 ,获得积分10
33秒前
34秒前
是的发放发布了新的文献求助10
35秒前
小马甲应助王佳豪采纳,获得10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432