亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques

干涉合成孔径雷达 山崩 流离失所(心理学) 算法 地质学 系列(地层学) 人工智能 机器学习 时间序列 计算机科学 岩土工程 合成孔径雷达 心理学 古生物学 心理治疗师
作者
Chao Zhou,Ying Cao,Lulu Gan,Yue Wang,Mahdi Motagh,Sigrid Roessner,Xie Hu,Kunlong Yin
出处
期刊:Engineering Geology [Elsevier]
卷期号:334: 107497-107497 被引量:61
标识
DOI:10.1016/j.enggeo.2024.107497
摘要

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1 A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助tongtong12345采纳,获得40
6秒前
13秒前
huibozi发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
35秒前
Noor完成签到,获得积分10
56秒前
Nature应助huibozi采纳,获得10
59秒前
丘比特应助bc采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科目三应助吃死你啦啦采纳,获得10
1分钟前
忞航完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
渡增越发布了新的文献求助10
2分钟前
科研通AI2S应助Wei采纳,获得10
2分钟前
2分钟前
渡增越完成签到,获得积分10
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
2分钟前
dawnfrf完成签到,获得积分10
2分钟前
daizao发布了新的文献求助30
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
爆米花应助酷炫灰狼采纳,获得10
3分钟前
冰姗完成签到,获得积分10
4分钟前
聪聪发布了新的文献求助10
4分钟前
4分钟前
Able完成签到,获得积分10
4分钟前
sun发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Ecokarster完成签到,获得积分10
5分钟前
楚楚完成签到 ,获得积分10
5分钟前
所所应助鳄鱼不做饿梦采纳,获得50
5分钟前
111完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385