已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques

干涉合成孔径雷达 山崩 流离失所(心理学) 算法 地质学 系列(地层学) 人工智能 机器学习 时间序列 计算机科学 岩土工程 合成孔径雷达 心理学 古生物学 心理治疗师
作者
Chao Zhou,Ying Cao,Lulu Gan,Yue Wang,Mahdi Motagh,Sigrid Roessner,Xie Hu,Kunlong Yin
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:334: 107497-107497 被引量:24
标识
DOI:10.1016/j.enggeo.2024.107497
摘要

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1 A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxpower完成签到,获得积分10
刚刚
鲸落发布了新的文献求助10
1秒前
2秒前
2秒前
bible完成签到,获得积分10
2秒前
千里发布了新的文献求助10
3秒前
huangYinghua完成签到,获得积分10
3秒前
香蕉觅云应助accept来采纳,获得10
4秒前
研友_VZG7GZ应助huluwa采纳,获得10
7秒前
ATLI应助余姚采纳,获得20
7秒前
Orange应助吃饭加汤采纳,获得10
8秒前
10秒前
10秒前
hygge完成签到,获得积分10
11秒前
余笑完成签到,获得积分10
14秒前
千里完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
Pediatzeng发布了新的文献求助10
17秒前
苹果酸奶发布了新的文献求助10
18秒前
18秒前
19秒前
zhuosht发布了新的文献求助10
19秒前
英俊的铭应助rabwang采纳,获得10
19秒前
20秒前
粗心的chen发布了新的文献求助10
20秒前
一杯清茶发布了新的文献求助10
20秒前
打打应助lhtyzcg采纳,获得10
21秒前
23秒前
24秒前
accept来发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
小蘑菇应助大只佬采纳,获得10
27秒前
超爱蛋炒饭完成签到,获得积分20
27秒前
27秒前
lijuan完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153