A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques

干涉合成孔径雷达 山崩 流离失所(心理学) 算法 地质学 系列(地层学) 人工智能 机器学习 时间序列 计算机科学 岩土工程 合成孔径雷达 心理学 古生物学 心理治疗师
作者
Chao Zhou,Ying Cao,Lulu Gan,Yue Wang,Mahdi Motagh,Sigrid Roessner,Xie Hu,Kunlong Yin
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:334: 107497-107497 被引量:47
标识
DOI:10.1016/j.enggeo.2024.107497
摘要

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1 A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周运来完成签到,获得积分10
刚刚
2秒前
2秒前
江树远发布了新的文献求助10
3秒前
3秒前
3秒前
阿发完成签到,获得积分10
3秒前
搜集达人应助TTS采纳,获得10
4秒前
小只完成签到,获得积分20
4秒前
安详的冷安完成签到,获得积分10
4秒前
科研通AI6应助苹果怡采纳,获得10
4秒前
5秒前
科研通AI6应助悦耳的乐松采纳,获得10
5秒前
WN发布了新的文献求助10
7秒前
7秒前
豆儿嘚小豆儿完成签到,获得积分10
7秒前
善良的火完成签到 ,获得积分10
8秒前
自由的王完成签到,获得积分10
9秒前
大方千青发布了新的文献求助10
9秒前
9秒前
9秒前
香蕉觅云应助yx采纳,获得10
11秒前
阿发发布了新的文献求助10
11秒前
lucky发布了新的文献求助10
12秒前
12秒前
英姑应助huyang采纳,获得10
13秒前
有风来完成签到,获得积分10
14秒前
lllldjhdy完成签到 ,获得积分10
17秒前
木佑发布了新的文献求助20
18秒前
伏龙完成签到,获得积分10
19秒前
19秒前
RedBoy完成签到 ,获得积分10
20秒前
邢00完成签到 ,获得积分10
20秒前
汉堡包应助sunmcxz采纳,获得10
21秒前
科研通AI6应助微笑的曼容采纳,获得10
22秒前
23秒前
23秒前
有风来发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226281
求助须知:如何正确求助?哪些是违规求助? 4397803
关于积分的说明 13687484
捐赠科研通 4262318
什么是DOI,文献DOI怎么找? 2339085
邀请新用户注册赠送积分活动 1336462
关于科研通互助平台的介绍 1292463