Graphene and metal–organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation

检出限 气体分析呼吸 材料科学 纳米技术 石墨烯 生物标志物 甲醇 丙酮 计算机科学 工艺工程 色谱法 化学 有机化学 生物化学 工程类
作者
Anh Tuan Trong Tran,Kamrul Hassan,Trần Thanh Tùng,Ashis Tripathy,Ashok Mondal,Dušan Lošić
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:16 (18): 9084-9095
标识
DOI:10.1039/d4nr00174e
摘要

Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangqin发布了新的文献求助10
刚刚
想做只小博狗完成签到,获得积分20
刚刚
1秒前
October完成签到,获得积分10
1秒前
酷酷妙梦发布了新的文献求助10
1秒前
过分美丽关注了科研通微信公众号
1秒前
纯真大碗完成签到,获得积分10
2秒前
陌人陌言发布了新的文献求助10
2秒前
不配.应助旗树树采纳,获得20
3秒前
激情的宛白完成签到,获得积分10
3秒前
3秒前
搜集达人应助帅气的伯云采纳,获得10
4秒前
4秒前
科研小菜完成签到 ,获得积分10
4秒前
白杨完成签到 ,获得积分10
4秒前
5秒前
YOMU发布了新的文献求助10
5秒前
长情伊应助山复尔尔采纳,获得10
5秒前
5秒前
lisier完成签到,获得积分10
6秒前
wangw111发布了新的文献求助30
6秒前
dorothy_meng完成签到,获得积分10
7秒前
Eric_Z完成签到,获得积分10
8秒前
8秒前
奈何发布了新的文献求助10
8秒前
我的小宇宙呢完成签到,获得积分10
8秒前
慕青应助山橘月采纳,获得10
9秒前
合适苗条完成签到,获得积分10
9秒前
9秒前
个性的紫菜应助何肆意采纳,获得10
10秒前
10秒前
11秒前
慕容博发布了新的文献求助10
11秒前
琛哥物理发布了新的文献求助10
11秒前
asd完成签到,获得积分10
11秒前
zhangqin完成签到,获得积分10
12秒前
任性土豆发布了新的文献求助10
12秒前
猪娃不是猪完成签到,获得积分20
13秒前
英姑应助sun采纳,获得10
13秒前
畅快代亦完成签到,获得积分10
13秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384