亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graphene and metal–organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation

材料科学 纳米技术 石墨烯 生物标志物 计算机科学 化学 生物化学
作者
Anh Tuan Trong Tran,Kamrul Hassan,Trần Thanh Tùng,Ashis Tripathy,Ashok Mondal,Dušan Lošić
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:16 (18): 9084-9095 被引量:6
标识
DOI:10.1039/d4nr00174e
摘要

Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助通义千问采纳,获得10
7秒前
隐形曼青应助小米辣采纳,获得30
40秒前
1分钟前
通义千问发布了新的文献求助10
1分钟前
柔弱藏今发布了新的文献求助10
1分钟前
小米辣完成签到,获得积分10
2分钟前
2分钟前
吃了就会胖完成签到 ,获得积分10
2分钟前
小米辣发布了新的文献求助30
2分钟前
dream完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
丫子天空发布了新的文献求助10
2分钟前
2分钟前
lzxbarry应助andrele采纳,获得30
3分钟前
燕子完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
呆萌的鼠标完成签到 ,获得积分0
4分钟前
4分钟前
似水无痕完成签到,获得积分10
4分钟前
Anto完成签到,获得积分10
4分钟前
kuoping完成签到,获得积分0
4分钟前
李健应助科研通管家采纳,获得10
5分钟前
丫子天空完成签到,获得积分20
5分钟前
QCB完成签到 ,获得积分10
5分钟前
wodetaiyangLLL完成签到 ,获得积分10
5分钟前
科研通AI5应助彭日晓采纳,获得10
5分钟前
ZHANG完成签到 ,获得积分10
6分钟前
tenta完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
千里草完成签到,获得积分10
7分钟前
彭日晓发布了新的文献求助10
7分钟前
significant发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978