亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graphene and metal–organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation

材料科学 纳米技术 石墨烯 生物标志物 计算机科学 化学 生物化学
作者
Anh Tuan Trong Tran,Kamrul Hassan,Trần Thanh Tùng,Ashis Tripathy,Ashok Mondal,Dušan Lošić
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:16 (18): 9084-9095 被引量:9
标识
DOI:10.1039/d4nr00174e
摘要

Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
星辰大海应助Jimeng采纳,获得10
23秒前
31秒前
荼蘼发布了新的文献求助10
36秒前
李健应助TingtingGZ采纳,获得10
45秒前
情怀应助荼蘼采纳,获得10
45秒前
耶斯发布了新的文献求助10
51秒前
54秒前
TingtingGZ发布了新的文献求助10
59秒前
荼蘼完成签到,获得积分20
59秒前
汉堡包应助耶斯采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Chloe应助科研通管家采纳,获得10
1分钟前
2分钟前
十三发布了新的文献求助10
2分钟前
城南花已开完成签到,获得积分10
2分钟前
科研通AI5应助十三采纳,获得30
2分钟前
花花完成签到 ,获得积分10
2分钟前
十三完成签到,获得积分20
2分钟前
火星上的博涛完成签到,获得积分20
2分钟前
穆振家完成签到,获得积分10
3分钟前
king完成签到 ,获得积分10
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助勤劳初雪采纳,获得10
4分钟前
浮游应助勤劳初雪采纳,获得10
4分钟前
女爰舍予完成签到 ,获得积分10
4分钟前
李健应助勤劳初雪采纳,获得10
4分钟前
予秋发布了新的文献求助10
5分钟前
5分钟前
5分钟前
勤劳初雪完成签到 ,获得积分10
5分钟前
予秋发布了新的文献求助10
5分钟前
丘比特应助隐形的小刺猬采纳,获得10
5分钟前
5分钟前
AS发布了新的文献求助10
5分钟前
Chloe应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
柠檬完成签到,获得积分10
6分钟前
AS完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900728
求助须知:如何正确求助?哪些是违规求助? 4180509
关于积分的说明 12976906
捐赠科研通 3945262
什么是DOI,文献DOI怎么找? 2164035
邀请新用户注册赠送积分活动 1182326
关于科研通互助平台的介绍 1088546