亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graphene and metal–organic framework hybrids for high-performance sensors for lung cancer biomarker detection supported by machine learning augmentation

材料科学 纳米技术 石墨烯 生物标志物 计算机科学 化学 生物化学
作者
Anh Tuan Trong Tran,Kamrul Hassan,Trần Thanh Tùng,Ashis Tripathy,Ashok Mondal,Dušan Lošić
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:16 (18): 9084-9095 被引量:6
标识
DOI:10.1039/d4nr00174e
摘要

Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tree发布了新的文献求助10
2秒前
大模型应助tree采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
tree完成签到,获得积分20
37秒前
辉辉完成签到,获得积分10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
黑白完成签到 ,获得积分10
3分钟前
4分钟前
Qian完成签到 ,获得积分10
4分钟前
情怀应助Ying采纳,获得20
4分钟前
4分钟前
5分钟前
科研通AI5应助忧虑的安青采纳,获得10
5分钟前
juejue333完成签到,获得积分10
5分钟前
5分钟前
5分钟前
Ying发布了新的文献求助20
5分钟前
5分钟前
Betty发布了新的文献求助10
5分钟前
Betty完成签到,获得积分10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
笨笨完成签到,获得积分10
6分钟前
6分钟前
6分钟前
思源应助嘿嘿嘿侦探社采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
gyh发布了新的文献求助10
7分钟前
孤独的涵柳完成签到 ,获得积分10
7分钟前
7分钟前
gyh完成签到,获得积分20
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得30
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638