地形
贝叶斯概率
点云
后验概率
计算机科学
人工智能
数据挖掘
统计模型
云计算
贝叶斯推理
点(几何)
统计分析
遥感
地理
统计
模式识别(心理学)
数学
地图学
几何学
操作系统
作者
Haval Abdul-Jabbar Sadeq
标识
DOI:10.1080/14498596.2024.2337742
摘要
This paper introduces a novel Bayesian filtering technique for the filtration of ground points in complex terrain and steep inclines in remote sensing applications. The technique integrates LAStools and statistical techniques, generating a posterior distribution using prior probability and likelihood functions. It is applied to point cloud data from UAV aerial images and DSM formats. The study shows that the Bayesian method improves the outcome in sloping regions compared to other algorithms like LAStools, Statistical, and CSF. In flat terrain, the CSF approach produced the highest F1 score, while the Bayesian method showed degradation but outperformed statistical and LAStools approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI