亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quality detection and variety classification of pecan seeds using hyperspectral imaging technology combined with machine learning

高光谱成像 光谱特征 机器学习 人工智能 支持向量机 预处理器 人工神经网络 数学 计算机科学 农业工程 环境科学 模式识别(心理学) 遥感 工程类 地理
作者
Bingyu Chen,Baolong Shi,Jiarun Gong,Guangjie Shi,Hongmiao Jin,Tao Qin,Zhengfu Yang,Kean‐Jin Lim,Wei Liu,Junpei Zhang,Zhengjia Wang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:131: 106248-106248 被引量:16
标识
DOI:10.1016/j.jfca.2024.106248
摘要

Pecan (Carya illinoinensis K.), a well-known dried seed and woody oil tree, faces challenges in its industry due to complex quality assessment methods and confusing varieties. These challenges have seriously hampered the development of a large-scale pecan deep processing industry. This work aimed to apply hyperspectral imaging technology (HSI) combined with machine learning to evaluate the quality of pecan seeds and perform variety classification. The samples of this work were composed of 19 varieties of pecan seeds, with 30 seeds per variety. After spectral preprocessing, spectral features were extracted from the spectral profiles using feature extraction methods. Back-propagation neural network models and partial least squares models were established to predict the contents of crude fat and moisture in pecan seeds. Predictions of the best models gave good results with R2-score of 0.887 for the crude fat model and 0.950 for the moisture model. Additionally, support vector machine models were developed to identify pecan varieties. The model achieved good results in 19 pecan varieties identification with accuracy of 0.965. In conclusion, the combination of HSI and machine learning could be an effective tool in improving the pecan industry and providing sustainable and efficient methods in the production of pecan seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
9秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
52秒前
59秒前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
暴躁的奇异果完成签到,获得积分10
2分钟前
2分钟前
领导范儿应助Ming采纳,获得10
2分钟前
2分钟前
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
George发布了新的文献求助10
3分钟前
3分钟前
Ming发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Enso完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
阿里给阿里的求助进行了留言
5分钟前
小透明发布了新的文献求助10
5分钟前
5分钟前
SUNny发布了新的文献求助10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491